Electronic Supporting Information

Colloidal Synthesis of 1-D van der Waals material Nb₂Se₉: Study of Synergism of Coordinating agent in Co-solvent system

Tae Yeong Kim,^{†a}, Chaeheon Woo,^{†a}, Kyung Hwan Choi,^b Xue Dong,^b Jiho Jeon,^b Jungyoon Ahn,^a Xiaojie Zhang,^a Jinsu Kang,^a Hyung-Suk Oh,^{a,c,d} Hak Ki Yu,^{*e} and Jae-Young Choi^{*a,b,d}

^aSchool of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea

^bSKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea

^cClean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea

^{*d}KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea*</sup>

^eDept. of Materials Science and Engineering & Dept. of Energy Systems Research, Ajou University, Suwon 16499, Korea

Table of contents

Table S1. Molecular structure, functional group and, redox potential of 7 selected solvents.Fig. S1. Bar graph of Nb₂Se₉ synthesis condition as a function of precursor concentration and reducing power.

Fig. S2. XRD patterns of Nb₂Se₉ synthesised from ODE (left) and OLA (right) conditions in a concentration range of 0.01–0.50 M.

Fig. S3. Nb₂Se₉ length histogram at various solvent ratio conditions of ODE/OLA system.

Table S2. XRD intensity ratio and FWHM of Nb₂Se₉ synthesised from ODE/OLA system.

Fig. S4. Yield of as-synthesized Nb₂Se₉ from (a) single-solvent and (b) ODE/OLA system.

Fig. S5. FT-IR spectrum of Nb₂Se₉ derived from single-solvent syntheses.

Fig. S6. Cyclic voltammetry plot of morphology-controlled Nb₂Se₉ with ODE/OLA ratio of 16:4, 12:8, 8:12, and 4:16.

Fig. S7. (a) Ring current and (b) electron transfer number of morphology-controlled Nb₂Se₉ from ODE/OLA ratio of 16:4, 12:8, 8:12, and 4:16.

Fig. S8. Chronoamperometry stability test of W-Nb₂Se₉ from 16:4 condition.

Table S3. ORR performance of catalysts obtained from RDE.

Supplementary Figures

Solvent	Molecular structure	Functional group	Redox pote	ntial
Octadecanoic acid (ODAc)	l	СООН	ODAc	
Oleic acid (OLAc)		СООН	OLAc	s S CE
Oleylalcohol (OLAl)		ОН	OLA1	∃ Inactiv hydroc
Octadecane (ODC)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	alkane	• ODC	2 vated arbon Olefi
Octadecanethiol (ODT)		SH	• ODT	n Carbo
Octadecene (ODE)	~~~~~	alkene	• ODE	Amine
Oleylamine (OLA)	NH,	NH ₂	• OLA	

Table S1. Molecular structure, functional group and, redox potential of 7 selected solvents.

Fig. S1. Bar graph of Nb₂Se₉ synthesis condition as a function of precursor concentration and reducing power.

Fig. S2. XRD patterns of Nb_2Se_9 synthesised from ODE (left) and OLA (right) conditions in a concentration range of 0.01–0.50 M.

Fig. S3. Nb₂Se₉ length histogram at various solvent ratio conditions of ODE/OLA system.

ODE:OLA	Morphology	Intensity ratio (010) / (100)	FWHM (010)	FWHM (100)
20:0	Rod	0.921	0.427	0.483
16:4	Wire	1.432	0.210	0.394
12:8	Wire	2.042	0.150	0.366
8:12	Sheet-like	2.752	0.114	0.165
4:16	Sheet-like	2.858	0.106	1.847
0:20	Sheet	2.071	0.131	0.328

Table S2. XRD intensity ratio and FWHM of Nb_2Se_9 synthesised from ODE/OLA system.

Fig. S4. Yield of as-synthesized Nb₂Se₉ from (a) single-solvent and (b) ODE/OLA system.

Fig. S5. FT-IR spectrum of Nb₂Se₉ derived from single-solvent syntheses.

Fig. S6. Cyclic voltammetry plot of morphology-controlled Nb₂Se₉ with ODE/OLA ratio of 16:4, 12:8, 8:12, and 4:16.

Fig. S7. (a) Ring current and (b) electron transfer number of morphology-controlled Nb₂Se₉ from ODE/OLA ratio of 16:4, 12:8, 8:12, and 4:16.

Fig. S8. Chronoamperometry stability test of W-Nb₂Se₉ from 16:4 condition.

Metal	Configuration	Eonset vs. RHE	Tafel slope	Reference
Pt	Pt (20 wt%)/C	1.07 V in 0.1 M KOH	57 mV dec ⁻¹	1
Ag	Ag (110)	0.91 V in 0.1 M KOH	80 mV dec ⁻¹	2
Au	Au (111)	0.84 V in 0.1 M KOH		3
Мо	MoS	0.78 V in 0.1 M KOH,	54.7 mV dec ⁻¹	4
Nb	W-Nb ₂ Se ₉	0.84 V in 0.1 M KOH	69.4 mV dec ⁻¹	This work

 Table S3. ORR performance of catalysts obtained from RDE.

References

- 1. J. Perez, E. R. Gonzalez, and E. A. Ticianelli, *Electrochim. Acta*, 1998, 44, 1329-1339.
- 2. B. B. Blizanac, P. N. Ross, and N. M. Markovic, J. Phys. Chem. B, 2006, 110, 4735-4741.
- 3. R. R. Adzic, S. Strbac, and N. Anastasijevic, *Materials Chemistry and Physics*, 1898, **22**, 349-375.
- 4. C. Tang, Y. Jiao, B. Shi, J. N. Liu, Z. Xie, X. Chen, Q. Zhang, and S. Z. Qiao, *Angew. Chem., Int. Ed.*, 2020, **59**, 2-8.