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Self-Consistent Field Theory Coupled with Density Functional Theory (SCFT/DFT)

The method coupling self-consistent field theory and density functional theory for the mixture

consisting of block copolymers and nanoparticles was developed by Balazs and coworkers, which

is based on the mean-field approximation.S1 We consider a mixture of volume V consisting of

melting A′(A′′B)n miktoarm star block copolymers and solid spherical nanoparticles. All nanopar-

ticles have the same radius RP, and their concentration is denoted as ψP. Each copolymer chain is

modeled as a flexible Gaussian chain containing N segments of volume ρ−1
0 and length a.

The free energy functional of the blending system in the SCFT/DFT model is expressed as
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(S1)

where kB is the Boltzmann constant and T is the temperature. α is the volume ratio of the nanopar-

ticle with radius RP to the block copolymer chain, i.e., α = 4πR3
P/3Nρ−1

0 . χµν characterizes the

interaction between species µ and ν . ϕA(r), ϕB(r) and ϕP(r) are the spatial distribution of volume

fractions of A block, B block and nanoparticles, respectively, while wA(r), wB(r) and wP(r) are

their conjugate potential fields. ρP(r) is the density distribution of nanoparticles. The local volume

fraction of nanoparticles ϕP(r) is related to the density distribution ρP(r) by the local integration

ϕP(r) = (3α)/(4πRP
3)

∫
|r′|≤RP

dr′ρP(r+ r′). QP is the partition function for single nanoparticle

under the field wP(r), and is given by QP =
∫

drexp(−wP(r)).

QC =
∫

dr qK(r, s)q†
K(r, s) is the partition function of a single block copolymer interacting

with the mean fields wA(r) and wB(r), where s is the variable of chain contour. qK(r, s) and

q†
K(r, s) (K = A′, A′′ and B) are the propagator functions of K-block starting from two distin-

guishable ends. For the A′-block, qA′(r, s) and q†
A′(r, s) start from its free end indicated by s = 0

and the A′/A′′ junction point indicated by s = fA′ with the initial conditions as qA′(r, 0) = 1 and

q†
A′ (r, fA′) =

[
q†

A′′(r, 0)
]n

, respectively. For each A′′-block, qA′′(r, s) and q†
A′′(r, s) start from the
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A′/A′′ junction point indicated by s = 0 and the A′′/B junction point indicated by s = ( f − fA′)/n

with the initial conditions as qA′′(r, 0) = qA′ (r, fA′)
[
q†

A′′(r, 0)
]n−1

and q†
A′′ (r, ( f − fA′)/n) =

q†
B(r, 0), respectively. For each B-block, qB(r, s) and q†

B(r, s) start from the A′′/B junction

point indicated by s = 0 and its free end indicated by s = (1− f )/n with the initial conditions

as qB(r, 0) = qA′′ (r, ( f − fA′)/n) and q†
B(r, (1− f )/n) = 1, respectively. The two categories of

propagator functions satisfy the following modified diffusion equations

∂
∂ s

qK (r, s) = ∇2qK (r, s)−w(r)qK (r, s) , (S2)

− ∂
∂ s

q†
K (r, s) = ∇2q†

K (r, s)−w(r)q†
K (r, s) , (S3)

where w(r) = wA (r) for K = A′ and A′′, and otherwise w(r) = wB (r). The above equations imply

that the chain contour is rescaled by N, and the length unit chosen as Rg = N1/2a/
√

6 where a is

the Kuhn length of A and B blocks.

The last term of eq S1 describes the steric free energy of the particles according to Carnahan-

Starling function ΨHS(x) = (4x−3x2)/((1− x)2).S2 ϕ̄P(r) is the weighted nonlocal volume frac-

tion of particles. The relationship between ϕ̄P(r) and ρP(r) is as follows:

ϕ̄P(r) = (3α)/(4π(2RP)
3)

∫
|r′|≤2RP

dr′ρP(r+ r′). (S4)

Minimization to the free energy functional in eq S1 leads to the following set of self-consistent

equations:

wA (r) = χABNϕB (r)+χAPNϕP (r)+ξ (r) , (S5)

wB (r) = χABNϕA (r)+χBPNϕP (r)+ξ (r) , (S6)
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(S7)

Where

Ψ′
HS (x) =

dΨHS (x)
dx

, (S8)

ϕA (r) =
(1−ψP)V

QC

[∫ fA′

0
qA′ (r, s)q†

A′ (r, s)ds

+n
∫ ( f− fA′)/n

0
qA′′ (r, s)q†

A′′ (r, s)ds

]
,

(S9)

ϕB (r) =
n(1−ψP)V

QC

∫ (1− f )/n

0
qB (r, s)q†

B (r, s)ds, (S10)

ρP (r) =
ψPV
αQP

exp(−wP (r)) . (S11)

The spatial function ξ (r) is a Lagrange multiplier function used to enforcing the incompressibility

condition ϕA(r)+ ϕB(r)+ ϕP(r) = 1. These SCFT equations are solved iteratively by the pseu-

dospectral method.S3
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Finite Difference Quasielectrostatic Modeling for Determining the Dielectric Properties

The calculation of the effective permittivity for the polymer/nanoparticle mixture is based on a

quasielectrostatic finite-difference formulation.S4 Such quasistatic methods are useful for simulat-

ing systems in which the characteristic structure sizes are much smaller than the electromagnetic

wavelength.

We consider a parallel plate capacitor filled by the mixture of A′(A′′B)n miktoarm star block

copolymers and nanoparticles forming the G structure. In the plate capacitor, a constant potential

difference U0 = Uup −Udown is kept between the capacitor plates. Once the model space is filled

with the desired arrangement of constituent phases, the potentials at the grid points can be obtained

by the continuity of electric displacement,

∇ · [ε (r)E(r)] = 0, (S12)

where E(r) is the electric field, and ε (r) is the permittivity at position r. The electric fields

for this step are computed from the differences between the potentials at neighboring grid points.

Bi-conjugate gradient technique is employed to accelerate convergence. After the system has been

converged, the electric field distribution throughout the model space is computed from the gradients

of the potentials. Then, the effective permittivity, εeff,can be calculated via

εeff =
h
∫

Ω ε (r)E(r) ·dS
S
(
Uup −Udown

) , (S13)

where the h and S are the thickness and surface area of the capacitor. The integral in Equation S12

extends over the surface Ω of the capacitor.

The local permittivity ε (r) is determined according to the distribution of the different com-

ponents in the self-assembled structures of the mixing A′(A′′B)n copolymers and nanoparticles.

Since the organization of the nanoparticles is a critical factor affecting the dielectric properties,

we map the density distribution of nanoparticles obtained from the SCFT/DFT method into the

positions of the particle centers by using the density-biased Monte Carlo method. The mapping

S-6



process is shown in Figure S9a. After the mapping process, each grid in the calculation space is

occupied by nanoparticles or block copolymers, and the permittivity is εNP = 1235 or εpoly = 3.6

at nanoparticle or copolymer occupying grids.

The density-biased Monte Carlo method can lead to deviations in the calculated equivalent

permittivity between different mappings. Therefore, the effective macroscopic permittivity is ob-

tained by averaging over a larger number of mappings. It is found that the average permittivity

converges to almost constant over 200 mappings (see Figure S9b).
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Figure S1: (a) Phase diagram with respect to f and τ for the pure A′(A′′B)3 copolymer. (b) Width
of the gyroid region as a function of τ .
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Figure S2: Phase diagram with respect to f and ψP for the AB diblock copolymer/nanoparticle
mixture with χABN = χBPN = 35 and χAPN = 0.
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Figure S3: One-dimensional distributions of nanoparticles, A′ and A′′-blocks in the cylinder mor-
phology (C6) at fixed f = 0.45 and τ = 0.72 for various ψP: (a) ψP = 0.025, (b) ψP = 0.075, (c)
ψP = 0.125 and (d) ψP = 0.175.
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Figure S4: Phase diagrams with respect to the effective volume fraction fe f f and ψP of the
A′(A′′B)3/NP mixture with χABN = χBPN = 35 and χAPN = 0: (a) τ = 0.72, (b) τ = 0.6, (c)
τ = 0.2 and (d) τ = 0.8.
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Figure S5: Phase diagrams with respect to f and ψP for A′(A′′B)3/NP mixtures with χABN =
χBPN = 35 and χAPN = 35 for τ = 0 (a) and τ = 1 (b).
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Figure S6: (a) Width of the G-phase region of the A′(A′′B)3/NP mixture as a function of τ at fixed
ψP = 0.1 and RP = 0.5Rg for χABN = 35, χABN = 40, χABN = 50 and χABN = 60. (b) Width of the
G-phase region as a function of τ at fixed ψP = 0.1 and χABN = 35 for RP = 0.3Rg, RP = 0.4Rg,
RP = 0.5Rg and RP = 0.6Rg.
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Figure S7: Channel size (a) and effective concentration ψP,e f f of nanoparticles within the channels
(b) of the double-gyroid structure as a function of ψP for τ = 0.6 and f = 0.5. Channel size (c)
and ψP,e f f (d) as a function of f for ψP = 0.15.
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Figure S8: (a) The dimension of the unit cell of the double-gyroid structure l0 as a function of ψP
for f = 0.5 and τ = 0.6. (b) l0 as a function of f for ψP = 0.15 and τ = 0.6.
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Figure S9: (a) Schematic illustration of the mapping process by using the density-biased Monte
Carlo method. (b) Averaged permittivity as a function of the number of repeated mappings.
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