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Reservoir computing integration, internal state and discrimination 

Reservoir integration is the process of incorporating external information or knowledge into the 
internal states of a reservoir computer. This can be done in several ways, depending on the 
specific task and application of the reservoir computer. One common approach is to use an 
external memory or buffer to store information that is relevant to the current input or task, and 
to incorporate this information into the internal states of the reservoir. This can be done by 
modifying the input weights or the reservoir weights, or by adding additional input or output 
connections to the reservoir. Another approach is to use external feedback connections to 
directly influence the internal states of the reservoir. This can be done by adding additional 
connections from the output of the reservoir back to the input or to the internal states of the 
reservoir. In general, reservoir integration can be used to improve the performance of a reservoir 
computer by providing additional information or context that can help to interpret the input or 
the internal states of the reservoir. 

Reservoir states refer to the internal states of a reservoir computer, used for machine learning 
tasks such as time series prediction and chaotic systems modeling. The internal states of a 
reservoir computer can be represented as a high-dimensional dynamic system of equations, 
typically given by: 

𝑥𝑥(𝑡𝑡) = 𝑓𝑓(𝑊𝑊𝑖𝑖𝑖𝑖𝑢𝑢(𝑡𝑡) + 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥(𝑡𝑡 − 1) + 𝑏𝑏) 

where x(t) is the internal state of the reservoir at time t, u(t) is the input to the reservoir at time 
t, Win is the input weight matrix, Wres is the reservoir weight matrix, b is the bias vector, and f is 
the nonlinear activation function. The internal states of the reservoir are typically high-
dimensional and complex and are difficult to interpret or understand. 

The discrimination ability of a reservoir computer can be defined as the ability to separate or 
distinguish different inputs or input patterns based on their internal states. This is achieved using 
a readout layer, which maps the high-dimensional internal states of the reservoir to a lower-
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dimensional output space. The readout layer can be trained to respond differently to different 
inputs, allowing the reservoir computer to perform tasks such as classification or pattern 
recognition. The readout layer can be represented as a linear transformation: 

𝑦𝑦(𝑡𝑡) = 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥(𝑡𝑡) + 𝑐𝑐 

where y(t) is the output of the reservoir at time t, Wout is the output weight matrix, and c is the 
output bias vector. 

 

 

Figure S1. Schematic of reservoir computing. 

Figure S2. Microelectrode array (MEA) schematic used for 
2D device fabrication. The electrode array was fabricated 
using photolithography and chemical etching. The unit for 

all values shown are Micrometer (µm). 



 

 

 

 

 

 

 

 

 

 

 

 

Figure S3 The methodology for waveform generation benchmark task. 



 

 

 

 

 

 

Figure S4. 3D device waveform generation task with 3 VPP 11-Hz sinusoidal input and square wave target (one out 
of five samples). 

Figure S5. FESEM image of pristine (blank) melamine foam. 



 

 

 

 

 

 

 

 

 

Figure S6. Correlation of γ with scale free network topology. 

Figure S7. Correlation of A with scale free network topology. 



 

 

 

 

 

 

 

 

 

 

 

Figure S8. The 1/f fitting of PSD data obtained from five samples of 2D (red box) and five samples of 3D (blue box) 
devices with 3V DC input, calculated using Eq. 1. 

Figure S9. The memory capacity plot obtained from five samples of 2D (red box) and five samples of 3D (blue box) 
devices with random pulses of zeros and ones as input, calculated using Eq. 2. 



 

 

 

 

 

 

 

 

 

 

 

Figure S10. Lissajous plot of a) 2D and c) 3D devices obtained by plotting the input and output data collected 
from 3 V 11-Hz AC signal input; FFT plot of b) 2D and d) 3D devices obtained from 3 V 11-Hz AC signal input. 



 

 

 

 

 

 

 

 

 

 

 

Figure S11. The Lissajous plot obtained from five samples of 2D (red box) and five samples of 3D (blue box) devices 
with 3 V 11-Hz AC input. 

Figure S12. The FFT plot obtained from five samples of 2D (red box) and five samples of 3D (blue box) devices with 3 
V 11-Hz AC input. Red dashed circle exhibits the higher harmonics. 



 

 

 



 

 

Waveform generation 

Fourier series use infinite series of periodic sinusoid functions of different coefficients to produce 
complex periodic functions with other forms such as sawtooth (Equation S1) and square wave 
(Equation S2). It is evident that to construct a sawtooth wave, long-range of both odd and even 
harmonics are required, while from the FFT data (Figures S8b, S8d, and S10), it is clear that some 
samples exhibit very short-range harmonics with stronger odd harmonics intensity than the even. 
As a result, the waveform generation task, particularly with the sawtooth wave target, shows the 
observed result. On the other hand, the square wave requires a long-range of odd harmonics, 
and since odd harmonic intensities are stronger in the samples, reconstruction of the target wave 
results in higher accuracy. 
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Figure S 13. Correlation of resistance (R) (SWNT junction resistance) and capacitance (C) (interface between SWNT 
and POM) in parallel RC circuit 1–3) with a) Impedance (Z) and b) phase angle (Φ). The increase in capacitance (C) or 
resistance (R) increase the phase angle (Φ) while the impedance (Z) is mainly affected by change in resistance. It is 
evident from LTspice XVII simulation results shown in figures c), d) and e), f) that the increase in junction resistance 
(R) increase the nonlinear spatiotemporal dynamics of the device. On the other hand, we can see that the less 
amount of interface between SWNT and POM represented by smaller C value (1nF) results in lower output voltage 
in the device with higher junction resistance (figure f) which is not evident in the device with lower junction 
resistance (figure e) which exhibits nearly no spatiotemporal dynamics. This behavior can be explained by 
considering the impedance (Z) and phase angle (Φ). In c) and d) as junction resistance increases the Z slightly and Φ 
drastically increase resulting in a prominent spatiotemporal dynamic while in e) and f) although the Φ is nearly the 
same the Z increase drastically resulting in smaller current flow between input and output electrodes. Considering 
that C is the same in e) and f) and 𝐼𝐼𝐶𝐶 = 𝐶𝐶 𝑑𝑑𝑑𝑑

𝑑𝑑𝑜𝑜
 we could conclude that 𝐼𝐼𝐶𝐶 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑜𝑜
 and the current drop results in slower 

rate of voltage change resulting in the presence of relatively more distinct spatiotemporal dynamics. 

 



 

Figure S14. The waveform generation for 11-Hz sawtooth target wave obtained from five samples of 2D (red box) 
and five samples of 3D (blue box) devices with 3 V 11-Hz sinusoidal input. 

 

 

Figure S15. The waveform generation for 11-Hz square target wave obtained from five samples of 2D (red box) and 
five samples of 3D (blue box) devices with 3 V 11-Hz sinusoidal input. 

 



 

Figure S16. The waveform generation for sine 22-Hz target wave obtained from five samples of 2D (red box) and 
five samples of 3D (blue box) devices with 3 V 11-Hz sinusoidal input. 

 

 

Figure S17. The waveform generation for sine 33-Hz target wave obtained from five samples of 2D (red box) and 
five samples of 3D (blue box) devices with 3 V 11-Hz sinusoidal input. 
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