1	Supplemental information
2	Regulating thermal conductivity of monolayer MnPS₃ by magnetic
3	phase transition
4 5	Dingbo Zhang ^{1,2§} , Ke Wang ^{3§} , Shuai Chen ² , Lifa Zhang ⁴ , Yuxiang Ni ^{1*} , Gang Zhang ^{2*}
6	
7	¹ School of Physical Science and Technology, Southwest Jiaotong University, Chengdu
8	610031, China
9	² Institute of High Performance Computing, A*STAR, 138632, Singapore
10	³ School of Automation, Xi'an University of Posts & Telecommunications, Shaanxi,
11	710121, China
12	⁴ NNU-SULI Thermal Energy Research Center, and Center for Quantum Transport
13	and Thermal Energy Science (CQTES), School of Physics and Technology, Nanjing
14	Normal University, Nanjing 210023, China
15	
16	§authors contributed equally to this work.
17	*author to whom correspondence should be addressed:
18	yuxiang.ni@swjtu.edu.cn; zhangg@ihpc.a-star.edu.sg
19	

20 Calculation methods

Density functional theory (DFT) ¹ calculations are carried out by means of the Vienna ab initio simulation (VASP) package ² with projector-augmented wave (PAW) potentials ³. The exchange-correlation functional is treated by using generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerof (PBE) formulation ⁴.

We compute the second-order (harmonic) interatomic force constants (IFCs) using 25 the Phononpy package ⁵ and the third-order (anharmonic) IFCs using the thirdorder.py 26 code ⁶. 3×3×1 supercell was adopted for the calculations of second-order harmonic and 27 third-order anharmonic IFCs, respectively. For the anharmonic IFCs calculations, a 28 cutoff radius (r_{cutoff}) of more than 7.0 Å is used. Based on the harmonic and anharmonic 29 IFCs, the lattice thermal conductivity (κ_L) is calculated by solving the phonon 30 31 Boltzmann transport equation as implemented in the ShengBTE code ⁷. For the 32 convergence of thermal conductivity, the phonon sampling k-mesh in the BZ was tested and we adopted a dense phonon q-grid of $40 \times 40 \times 1$. 33

2 Lattice constants

3 To obtain the experimental lattice constant of MnPS₃, we did a comprehensive literature review, and the lattice constants are summarized in Table S1. In Re.[8], the 4 lattice constants of bulk MnPS₃ at PM state were measured by neutron diffraction at 90 5 K (a=6.051, b=10.523), slightly smaller than that at AFM state (a=6.077 Å, b=10.524 6 Å)^{9,10}. The calculated lattice parameters of bulk MnPS₃ are $a=6.06\sim6.183$ Å, 7 b=10.406~10.783Å at AFM phases through density functional theory, which agrees 8 well with the experimental results and suggests the validity of DFT calculation on 9 MnPS₃. 10

Although substantial studies about 2D MnPS₃ have been implemented¹¹⁻²⁴, the 11 experimental lattice constants of MnPS₃ monolayer are rare. In 2017, Ref.[25] 12 13 measured the lattice parameters of multi-layer MnPS₃ flakes by high-angle annular dark-field (HAADF) HRSTEM image, which are a=6.08±0.05 Å, b=10.52±0.05 Å. 14 These values are close to the experimental lattice constants of bulk MnPS₃. In literature, 15 the lattice constants $(a \neq b)$ are for the conventional cell of MnPS₃, but the lattice 16 constant of honeycomb primitive cell (a=b) is always used to describe the geometrical 17 structure of MnPS₃ monolayer. For bulk MnPS₃, the experimental lattice constant is 18 a=b=6.076 Å for the honeycomb primitive cell as reported in Ref.[26]. In our 19 manuscript, the lattice constants for the primitive cell of MnPS₃ monolayer are 20 presented as 6.15, 6.14 and 5.70 Å at AFM, FM, and PM states, respectively. The lattice 21 constant at AFM state is slightly larger than the experimental result of bulk MnPS₃ but 22 consistent with the experimental result of 2D MnPS₃ flake in Ref.[25] well, while that 23 at FM and PM states agree well with the theoretical results of MnPS₃ monolayer in 24 Ref.[27]. 25

26 **Table S1**. Lattice constants for bulk and two-dimensional (2D) $MnPS_3$ at 27 antiferromagnetic (AFM), ferromagnetic (FM), and paramagnetic (PM) states.

System	Lattice constants (Å)	Magnetic state	Reference
--------	--------------------------	----------------	-----------

Bulk crystal	<i>a</i> =6.07, <i>b</i> =10.52	AFM	J. Phys. Soc. Jpn. 52 (11): 3919-3926, 1983	
Bulk crystal (Exp)	<i>a</i> =6.051, <i>b</i> =10.523	РМ	Phys. Rev. B, 82, 100408(R), 2010	
Bulk crystal (Exp)	<i>a</i> = <i>b</i> =5.81	AFM	Adv. Mater. 34, 2200301, 2022	
Primitive cell of bulk crystal (Exp)	<i>a=b=</i> 6.076	AFM		
Bulk crystal (DFT/LDA-TS)	<i>a=b=</i> 6.235	AFM	G M (G : 177	
Bulk crystal (DFT/LDA- OBS)	<i>a=b=</i> 6.038	AFM	109592, 2020	
Bulk crystal (DFT/LDA- Grimme)	Bulk crystal (DFT/LDA- <i>a=b=</i> 5.995 AF Grimme)			
Bulk crystal (DFT)	<i>a</i> =5.93, <i>b</i> =10.36	РМ	ACS nano, 10(2): 1738- 1743, 2016 (Experimental study)	
Bulk crystal (DFT)	<i>a</i> =5.59, 6.06 <i>b</i> =9.98, 10.51	PM, AFM	APL Mater. 7, 081102, 2019 (Experimental study)	
Bulk crystal (DFT)	<i>a</i> =6.183, <i>b</i> =10.783	AFM	Appl. Surf. Sci. 543, 148846, 2021	
Bulk crystal (DFT)	<i>a</i> =6.008, <i>b</i> =10.406	AFM	Phys. Chem. Chem. Phys. 23, 9679-9685, 2021	

Flake (1~6 L)	a=6.08±0.05,	AFM	ACS nano, 11(11):
(Exp)	<i>b</i> =10.524±0.05		11330-11336, 2017
Monolayer (DFT)	<i>a</i> =5.78, 6.023, 6.00	PM, FM, AFM	Phys. Rev. B, 94,
Bulk (DFT)	<i>a</i> =5.79, 6.018, 5.99		104420, 2010
Monolayer (DFT)	<i>a</i> =6.06, <i>b</i> =10.498	AFM	J. Mater. Chem. C, 7,
Bilayer (DFT)	a=6.06, b=10.495	AFM	524, 2019 (Europimontal study)
Bulk (DFT)	<i>a</i> =6.067, <i>b</i> =10.509	AFM	(Experimental study)
Monolayer (DFT)	<i>a=b=</i> 5.88	AFM	Phys. Rev. B, 91, 235425, 2015
Monolayer (DFT)	<i>a</i> =5.69, <i>b</i> =11	РМ	Int. J. Hydrogen Energy, 43(11): 5903-5912, 2018.
Monolayer (DFT)	<i>a</i> =6.077, <i>b</i> =10.524	AFM	Nanoscale, 12(45): 23266-23273, 2020 (Experimental study)
Monolayer (DFT)	<i>a=b=</i> 6.047	AFM	J. Mater. Chem. C, 8(24): 8098-8106, 2020

2 Magnetic ground state

For MnPS₃ monolayer with 3×3 supercell, we present four possible magnetic configurations including ferromagnetic (FM), antiferromagnetic-Zigzag (AFM-Zigzag), AFM-Stripy and AFM-Néel in Figure S1, where the non-magnetic P and S atoms are not shown for simplification. To determine the magnetic ground state of MnPS₃ monolayer, its total energies at these four magnetic states are calculated, and we found that the energy of FM, AFM- Zigzag and AFM-Stripy states are 197.76, 90.29, and 72.78 meV per unit cell higher than AFM-Néel state, respectively, indicating the magnetic ground state of MnPS₃ monolayer is AFM-Néel state. This AFM-Néel ground state, where the adjacent magnetic moments on Mn atoms interacted with each
 other antiparallelly, is consistent with previous theoretical studies²⁷⁻³⁰. Moreover, the
 AFM ground state in 2D MnPS₃ has also been proved experimentally by Raman
 spectroscopy^{13,31}, second-harmonic generation¹⁹, and tunneling magnetoresistance¹⁷.

6 Figure S1. Possible magnetic configurations of MnPS₃ monolayer, including
7 ferromagnetic (FM), antiferromagnetic-Zigzag (AFM- Zigzag), AFM-Stripy and AFM-

8 Néel. The red and green balls represent the spin-up and spin-down Mn atoms.

9 **Phononic properties**

10

The expression for the κ_L , specific heat (C), group velocities (v) and relaxation time

11 of phonon $(\overline{\tau_{\lambda}^{iso}})$ in ShengBTE:

 $\kappa_L = \frac{1}{V} \sum_i C_i \upsilon_i^2 \tau_i^{total}$

12

$$C_i = \frac{1}{V} \hbar w_i \frac{\partial F_0}{\partial T}$$

14 where C_i is the specific heat for phonon mode (i), and F_0 is Bose–Einstein statistics.

$$v_{i} = \frac{\partial w_{i}}{\partial k_{i}}$$

$$\frac{1}{16} \frac{1}{\tau_{\lambda}^{tol}} = \frac{1}{\tau_{\lambda}^{ph}} + \frac{1}{\tau_{\lambda}^{iso}} + \frac{1}{\tau_{\lambda}^{k}}$$

1 1 1 where $\overline{\tau_{i}^{ph}}$ is intrinsic anharmonic three-phonon scattering process, $\overline{\tau_{\lambda}^{iso}}$ is the isotope

scattering and $\overline{\tau_{\lambda}^{b}}$ is the boundary scattering rate. In our work, the boundary scattering 2 3 rate is neglected due to its little effect on the thermal conductivity.

$$\frac{1}{\tau_{i}^{ph}} = \frac{1}{N} \left(\sum_{i \ i}^{+} \Gamma_{ii \ i}^{+} + \sum_{i \ i}^{-} \frac{1}{2} \Gamma_{ii \ i}^{-} + \sum_{i}^{-} \Gamma_{ii}^{-} \right)$$

4

1 τ_{i}^{ph} is the relaxation time of mode i as obtained from perturbation theory. Γ_{iii}^{+} and Γ_{iii}^{-} 5 are three-phonon scattering rates of absorption and emission processes, respectively. 6 7 They can be expressed as

$$\Gamma_{ii\,i}^{\pm} = \frac{\hbar \pi f_0 - f_0}{4 w_i w_i w_i} |V_{ii\,i}^{\pm}|^2 \delta \left(w_i \pm w_i - w_i \right)$$

8

9 in which the scattering matrix elements V_{iii}^{\pm} are given by

$$V_{ii\,i}^{\pm} = \sum_{a \in u,c} \sum_{b,k} \sum_{\alpha\beta\gamma} \Phi_{abc}^{\alpha\beta\gamma} \underbrace{e_i^a(a)e_{p,\pm q}^{\beta}(b)e_{p,\pm q}^{\gamma}(c)}_{\sqrt{M_aM_bM_c}}$$

1

1

11 where for the normalized eigenfunctions $e_{p,q}$ of three phonons involved and on the

$$\Phi_{abc}^{\alpha\beta\gamma} = \frac{\partial^3 E}{\partial r_a^{\alpha} \partial r_b^{\beta} \partial r_c^{\gamma}}$$

12 anharmonic force constants

 Γ_{ii} is the contribution to scattering probabilities from isotopic disorder, 13

$$\Gamma_{ii} = \frac{\pi w^2}{2} \sum_{a \in u,c} g(a) \Big| e_i^*(a) \cdot e_i(a) \Big|^2 \delta \Big(w_i - w_i \Big)$$

Fig. S2. Phonon dispersions of monolayer MnPS₃ with (a) PM, (b) FM and (c) AFM 2 phases.

- 3
- 4

Fig. S3. Lattice vibration modes for A_{1g} , A_{2g} and A_{2u} . The red arrow points out the 6 atomic vibration, and the purple, grey and yellow spheres represent Mn, P and S atoms, 7 respectively. A_1g and A_2g are Raman active modes, while A_{2u} is infrared active. 8

9

3

Fig. S4. The magnetic ordering-dependent phonon-isotope scattering rates.

Table S2. For BAs and MoS₂, the calculated thermal conductivity values only 4 considering second- and third-order force constants (FCs), and those including the 5

higher-order force constants, at 200 K. 6

Thermal conductivity	high-order FCs	only second- and third-order FCs
BAs [Ref. 8]	$\sim 2500 \text{ W/(mK)}$	~ 2700 W/(mK)
MoS ₂ [Ref. 9]	$\sim 200 \ W/(mK)$	~ 200 W/(mK)

7

8 Table S3. Maximum group velocities of acoustic phonon modes for monolayer

9 MnPS₃ with PM, FM and AFM phases.

	maximum group velocity (km/s)	TA	LA
	PM	4.62	6.78
	FM	4.08	5.84
	AFM	3.92	5.62
10			
11			

1	CIF of p	arama	gnetic Mı	nPS ₃				
2								
3	data_VESTA_phase_1							
4								
5	_pd_phase_	name		'CI	F file			
6	_cell_lengtl	n_a		5.706	12			
7	_cell_lengtl	n_b		5.706	12			
8	_cell_lengtl	h_c		25.67	810			
9	_cell_angle	_alpha		90.00	000			
10	_cell_angle	_beta		90.00	000			
11	_cell_angle	_gamma		120	.00000			
12	_symmetry_	_space_gi	roup_name_H	I-M 'P	1'			
13	_symmetry_	_Int_Tabl	es_number	1				
14	loop_							
15	_symmetry_	_equiv_po	os_as_xyz					
16	'x, y, z'							
17	loop_							
18	_atom_s	site_label						
19	_atom_s	site_occuj	pancy					
20	_atom_s	site_fract_	_X					
21	_atom_s	site_fract_	_y					
22	_atom_s	site_fract_	_Z					
23	_atom_s	site_adp_	type					
24	_atom_s	site_B_iso	o_or_equiv					
25	_atom_s	site_type_	symbol					
26	Mn1	1.0	0.35627	0.64373	0.50000	Biso	1.000	Mn
27	Mn2	1.0	0.64373	0.35627	0.50000	Biso	1.000	Mn
28	P1	1.0	0.99727	0.99763	0.45813	Biso	1.000	Р
29	P2	1.0	0.00273	0.00237	0.54187	Biso	1.000	Р
30	S1	1.0	0.00445	0.65126	0.44201	Biso	1.000	S
31	S2	1.0	0.99555	0.34874	0.55799	Biso	1.000	S
32	S3	1.0	0.34378	0.34430	0.43892	Biso	1.000	S
33	S4	1.0	0.65622	0.65570	0.56108	Biso	1.000	S
34	S5	1.0	0.65077	0.00495	0.44201	Biso	1.000	S
35	S 6	1.0	0.34923	0.99505	0.55799	Biso	1.000	S

,

1	CIF of fe	erromagi	netic MnPS	3			
2							
3	data_VESTA	A_phase_1					
4							
5	_chemical_n	ame_comm	on	'CIF file	e		'
6	_cell_length	_a		6.14834			
7	_cell_length	_b		6.14834			
8	_cell_length	_c		22.68656			
9	_cell_angle_	alpha		90.00000			
10	_cell_angle_	beta		90.00000			
11	_cell_angle_	gamma		120.0000	0		
12	_space_grou	p_name_H-	M_alt	'P 1'			
13	_space_grou	p_IT_numb	er	1			
14	loop_						
15	_space_grou	p_symop_o	peration_xyz				
16	'x, y, z'						
17	loop_						
18	_atom_s	ite_label					
19	_atom_s	ite_occupan	cy				
20	_atom_s	ite_fract_x					
21	_atom_s	ite_fract_y					
22	_atom_s	ite_fract_z					
23	_atom_s	ite_adp_typ	e				
24	_atom_s	ite_B_iso_o	r_equiv				
25	_atom_s	ite_type_syı	nbol				
26	Mn1	1.0	0.333335	0.666667	0.499999	Biso	1.000000 Mn
27	Mn2	1.0	0.666665	0.333333	0.500001	Biso	1.000000 Mn
28	P1	1.0	0.000995	0.001415	0.451170	Biso	1.000000 P
29	P2	1.0	0.999005	0.998585	0.548830	Biso	1.000000 P
30	S 1	1.0	0.001475	0.681056	0.427426	Biso	1.000000 S
31	S2	1.0	0.998525	0.318944	0.572574	Biso	1.000000 S
32	S3	1.0	0.322522	0.323145	0.427424	Biso	1.000000 S
33	S4	1.0	0.677478	0.676855	0.572576	Biso	1.000000 S
34	S5	1.0	0.680434	0.002104	0.427425	Biso	1.000000 S
35	S 6	1.0	0.319566	0.997896	0.572575	Biso	1.000000 S
36							

1	CIF of a	antiferr	omagnetic	MnPS ₃			
2							
3	data_VESTA	A_phase_1					
4							
5	_chemical_r	name_comm	on	'CIF file	e		'
6	_cell_length	_a		6.13782			
7	_cell_length	_b		6.13782			
8	_cell_length	_c		22.76441			
9	_cell_angle_	alpha		90.00000			
10	_cell_angle_	beta		90.00000			
11	_cell_angle_	gamma		120.0000	0		
12	_space_grou	ıp_name_H-	M_alt	'P 1'			
13	_space_grou	ıp_IT_numb	er	1			
14	loop_						
15	_space_grou	ip_symop_o	peration_xyz				
16	'x, y, z'						
17	loop_						
18	_atom_s	ite_label					
19	_atom_s	ite_occupan	cy				
20	_atom_s	ite_fract_x					
21	_atom_s	ite_fract_y					
22	_atom_s	ite_fract_z					
23	_atom_s	ite_adp_typ	e				
24	_atom_s	ite_B_iso_o	r_equiv				
25	_atom_s	ite_type_syı	nbol				
26	Mn1	1.0	0.333334	0.666665	0.500000	Biso	1.000000 Mn
27	Mn2	1.0	0.666666	0.333335	0.500000	Biso	1.000000 Mn
28	P1	1.0	0.000999	0.001419	0.451326	Biso	1.000000 P
29	P2	1.0	0.999001	0.998581	0.548674	Biso	1.000000 P
30	S1	1.0	0.001485	0.680710	0.427682	Biso	1.000000 S
31	S2	1.0	0.998515	0.319290	0.572318	Biso	1.000000 S
32	S 3	1.0	0.322880	0.323505	0.427681	Biso	1.000000 S
33	S4	1.0	0.677120	0.676495	0.572319	Biso	1.000000 S
34	S5	1.0	0.680086	0.002110	0.427682	Biso	1.000000 S
35	S6	1.0	0.319914	0.997890	0.572318	Biso	1.000000 S
36							
37							

1	Refere	ences
2	1	Cohen, A. J., Mori-Sánchez, P. & Yang, W. Chemical reviews 112, 289-320, (2012).
3	2	Hafner, J. Journal of computational chemistry 29, 2044-2078, (2008).
4	3	Kresse, G. & Joubert, D. Phys. Rev. B 59, 1758, (1999).
5	4	Zhang, D., Hu, S., Sun, Y., Liu, X., Wang, H., Wang, H., Chen, Y. & Ni, Y. ES Energy &
6		Environment 10, 59-65, (2020).
7	5	Liu, X., Shao, X., Yang, B. & Zhao, M. Nanoscale 10, 2108-2114, (2018).
8	6	Yu, J., Li, T., Nie, G., Zhang, BP. & Sun, Q. Nanoscale 11, 10306-10313, (2019).
9	7	Li, W., Carrete, J., Katcho, N. A. & Mingo, N. Computer Physics Communications 185, 1747-
10		1758, (2014).
11	8	Ressouche, E., Loire, M., Simonet, V., Ballou, R., Stunault, A. & Wildes, A. Phys. Rev. B 82,
12		100408, (2010).
13	9	Wildes, A. R., Roessli, B., Lebech, B. & Godfrey, K. W. J. Phys.: Condens. Matter 10, 6417,
14		(1998).
15	10	Ouvrard, G., Brec, R. & Rouxel, J. Mater. Res. Bull. 20, 1181-1189, (1985).
16	11	Lee, S., Choi, KY., Lee, S., Park, B. H. & Park, JG. APL. Mater. 4, 086108, (2016).
17	12	Neal, S. N., Kim, HS., Smith, K. A., Haglund, A. V., Mandrus, D. G., Bechtel, H. A., Carr, G.
18		L., Haule, K., Vanderbilt, D. & Musfeldt, J. L. Phys. Rev. B 100, 075428, (2019).
19	13	Sun, YJ., Tan, QH., Liu, XL., Gao, YF. & Zhang, J. J. Phys. Chem. Lett. 10, 3087-3093,
20		(2019).
21	14	Mohamad Latiff, N., Rosli, N. F., Mayorga-Martinez, C. C., Szokolava, K., Sofer, Z., Fisher, A.
22		C. & Pumera, M. FlatChem 18, 100134, (2019).
23	15	Kargar, F., Coleman, E. A., Ghosh, S., Lee, J., Gomez, M. J., Liu, Y., Magana, A. S., Barani, Z.,
24		Mohammadzadeh, A., Debnath, B. et al. ACS Nano 14, 2424-2435, (2020).
25	16	Alliati, I. M., Evans, R. F., Novoselov, K. S. & Santos, E. J. arXiv preprint arXiv:2010.10466,
26		(2020).
27	17	Long, G., Henck, H., Gibertini, M., Dumcenco, D., Wang, Z., Taniguchi, T., Watanabe, K.,
28		Giannini, E. & Morpurgo, A. F. Nano Lett. 20, 2452-2459, (2020).
29	18	Bai, W., Hu, Z., Xiao, C., Guo, J., Li, Z., Zou, Y., Liu, X., Zhao, J., Tong, W., Yan, W. et al. J.
30		Am. Chem. Soc. 142, 10849-10855, (2020).
31	19	Chu, H., Roh, C. J., Island, J. O., Li, C., Lee, S., Chen, J., Park, JG., Young, A. F., Lee, J. S. &
32		Hsieh, D. Phys. Rev. Lett. 124, 027601, (2020).
33	20	Wildes, A. R., Okamoto, S. & Xiao, D. Phys. Rev. B 103, 024424, (2021).
34	21	Hicks, T. J., Keller, T. & Wildes, A. R. J. Magn. Magn. Mater. 474, 512-516, (2019).
35	22	Chaudhuri, S., Kuo, C. N., Chen, Y. S., Lue, C. S. & Lin, J. G. <i>Phys. Rev. B</i> 106 , 094416, (2022).
36	23	Feringa, F., Vink, J. & van Wees, B. arXiv preprint arXiv:2210.01418, (2022).
37	24	Ni, Z., Zhang, H., Hopper, D. A., Haglund, A. V., Huang, N., Jariwala, D., Bassett, L. C.,
38		Mandrus, D. G., Mele, E. J., Kane, C. L. et al. Phys. Rev. Lett. 127, 187201, (2021).
39	25	Long, G., Zhang, T., Cai, X., Hu, J., Cho, Cw., Xu, S., Shen, J., Wu, Z., Han, T., Lin, J. et al.
40		ACS Nano 11, 11330-11336, (2017).
41	26	Babuka, T., Makowska-Janusik, M., Peschanskii, A. V., Glukhov, K. E., Gnatchenko, S. L. &
42		Vysochanskii, Y. M. Comp. Mater. Sci. 177, 109592, (2020).
43	27	Chittari, B. L., Park, Y., Lee, D., Han, M., MacDonald, A. H., Hwang, E. & Jung, J. Phys. Rev.

44 *B* **94**, 184428, (2016).

1	28	Birowska, M., Faria Junior, P. E., Fabian, J. & Kunstmann, J. Phys. Rev. B 103, L121108,
2		(2021).
3	29	Alliati, I. M., Evans, R. F. L., Novoselov, K. S. & Santos, E. J. G. NPJ Comput. Mater. 8, 3,
4		(2022).
5	30	Xue, M., He, W., Gong, Q., Yi, M. & Guo, W. Extreme Mechanics Letters, 101900, (2022).
6	31	Kim, K., Lim, S. Y., Kim, J., Lee, JU., Lee, S., Kim, P., Park, K., Son, S., Park, CH., Park, J
7		G. et al. 2D Mater. 6, 041001, (2019).
8		