Supplementary Material

Unexpected Spontaneous Symmetry Breaking and Diverse Ferroicity emerged in

Two-dimensional Mono-Metal Phosphorus Chalcogenides

Hou-Yi Lyu^{1†}, Xing-Yu Ma^{2†}, Kuan-Rong Hao², Zhen-Gang Zhu^{2,3}, Qing-Bo Yan^{1*}, Gang

Su^{4,2,1*}

¹Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.

²School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

³School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

⁴Kavli Institute for Theoretical Sciences, and CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China

[†] These authors contributed equally to this work

Email: yan@ucas.ac.cn (Q.-B. Yan)

Email: gsu@ucas.ac.cn (G. Su)

Table of Contents

1. The calculation of out-of-plane electric polarization	1
2. The calculation of piezoelectric coefficients	2
3. The considered magnetic configurations	3
4. Phonon dispersion of 2D ferroelectric MPX ₃ members	4
5. Phonon dispersion of non-ferroelectric 2D MPX ₃ members	5
6. The thermodynamic stability of ferroelectric 2D MPX ₃ members	8
7. Electronic energy band of 2D ferroelectric MPX ₃ members	9
8. Electronic energy bands of stable non-ferroelectric 2D MPX ₃ members 1	0
9. The piezoelectric properteis of 2D ferroelectric MPX ₃ members 1	2
10. The ferroelectric trantition path of 2D ferroelectric MPX ₃ members	3
11. Stable anti-ferromagnetic (AFM) 2D MPX ₃ members	4
References 1	5

1. The calculation of out-of-plane electric polarization

The total out-of-plane electric polarization per unitcell has the form of $P_{unitcell} = P_{ion} + P_{el}$, where P_{ion} and P_{el} represents the out-of-plane ion polarization and out-ofplane electron polarization, respectively. We calculate P_{ion} based on the point charge model. The out-of-plane electron polarization is calculated using $P_{el} = \iint z\rho(\vec{r})d\vec{r}$, where $\rho(\vec{r})$ is the electron density and z is the spatial position along the z direction. The electric polarization can be defined in 3D or 2D form, and the conversion equations $P_{unitcell} = P_{3D} \times V = P_{2D} \times S$, where V and S are the volume and area of unitcell, respectively. We adopt pC/m as the unit of P_{2D} in the main text.

2. The calculation of piezoelectric coefficients

Piezoelectricity is a property of electric polarization caused by macroscopic strains. The piezoelectricity of 2D materials can be described by the coupling between surface polarization (P_i), macroscopic electric field (E_i), and stress (σ_{jk}) or strain (ε_{jk}), *i.e.*, $e_{ijk} = \partial P_i / \partial \varepsilon_{jk} = \partial \sigma_{jk} / \partial E_i$ and $d_{ijk} = \partial P_i / \partial \sigma_{jk} = \partial \varepsilon_{jk} / \partial E_i$. The subscripts *i*, *j*, and $k \in \{1,2,3\}$, where 1, 2, and 3 correspond to the spatial *x*, *y*, and *z* directions, respectively. In the Voigt notation, e_{ijk} and d_{ijk} are reduced to e_{il} and d_{ib} , respectively, where $l \in \{1,2,...,6\}$, which are correlated by elastic stiffness tensor C_{kl} as $e_{il} = d_{ik}C_{kl}$.

We adopted the methods proposed by Evan J. Reed [1] and Richard G. Hennig et. al., [2], which combines the symmetry analysis and DFT calculations to obtain the piezoelectric coefficients of 2D materials. DFT programs like VASP calculate the piezoelectric coefficients assuming periodic boundary conditions in a 3D system. To convert these coefficients to a 2D system, the above method assumes plane stress and plane strain conditions ($\varepsilon_{ij} = \sigma_{ij} = 0$ for i = 3 or j = 3) but the polarization is not limited to be in-plane [2], which implies that the d₃₃ or e₃₃ are not considered. The point group of the ferroelectric 2D MPX₃ members is 3m (C_{3v}) and the mirror symmetry is missing, which mean that they can exhibit nonzero in-plane coefficients e₁₁ (d₁₁) and out-of-plane coefficients e₃₁ (d₃₁).

3. The considered magnetic configurations

Figure S1. The considered magnetic configurations. (a) ferromagnetic and (b) Néel antiferromagnetic and (c) zigzag-antiferromagnetic configuration. Blue, purple, and green balls represent M, P, and X atoms, respectively. Blue and red arrows indicate the directions of magnetic moments. By comparing the energy of different magnetic configurations, we obtained the preferred magnetic order.

4. Phonon dispersion of 2D ferroelectric MPX₃ members

Figure S2. The phonon dispersions for 2D ferroelectric MPX₃ members.

5. Phonon dispersion of non-ferroelectric 2D MPX₃ members

Figure S3. Phonon band structures of non-ferroelectric 2D MPX₃.

6. The thermodynamic stability of ferroelectric 2D MPX₃ members

The thermodynamic stability can be described by the heat of formation (E_f) . We calculated the heat of formation of ferroelectric 2D MPX₃ members with dynamic stability. Here, the heat of formation (E_f) are obtained by using the equation E_f = $\frac{E(M_2P_2X_6)-2\times E(M)-2\times E(P)-6\times E(X)}{10}$, where $E(M_2P_2X_6)$, E(M), E(P) and E(X) represent the energy of per unit cell $(M_2P_2X_6)$, the average energy (per atom) of simple substance M, P and X, respectively. According to above definition, $E_{\rm f}$ <0 implies that the process forming the compound from simple substances is exothermic, and a more negative E_f indicates a better thermodynamic stability. The results are listed in Table S1. The Ef of eight ferroelectric members are negative, and most of them are ranging from -1.47 to -2.41 eV, except that of monolayer OsPS₃ is only -0.49 eV, indicating that most of them have good thermodynamic stability. As a comparison, the E_f of monolayer MnPS₃, MnPSe₃ and NiPS₃ obtained with the same method are -2.07, -1.22 and -2.18 eV, respectively. Note that their monolayer or few-layer forms had already been successfully synthesized.[3-5] Thus, these materials not only have good dynamic stability but also have good thermodynamic stability, and most of them are promising to be synthesized experimentally in future.

E _f /atom (eV)
-2.24
-1.47
-2.41
-1.64
-2.41
-1.73
-0.49
-1.97

Table S1. The heat of formation of ferroelectric 2D MPX₃ members

7. Electronic energy band of 2D ferroelectric MPX₃ members

Figure S4. Electronic band structures (GGA+U) of 2D ferroelectric MPX3 members The Fermi level is set as zero.

Figure S5. Electronic band structures (PBE-GGA+U) for stable 2D non-ferroelectric MPX₃. The Fermi level is set as zero.

9. The piezoelectric properteis of 2D ferroelectric MPX₃ members

Table S2. Elastic stiffness and piezoelectric coefficients of stable 2D ferroelectricMPX3 members

Formula	C ₁₁ (N/m)	C ₁₂ (N/m)	<i>e</i> ₁₁ (10 ⁻¹⁰ C/m)	<i>e</i> ₃₁ (10 ⁻¹⁰ C/m)	Piezoelectric (<i>d</i> ₁₁ , pm/V)	Piezoelectric (<i>d</i> ₃₁ , pm/V)
ScPS ₃	45.64	31.80	6.52	0.58	47.12	0.36
ScPSe ₃	40.86	25.14	4.88	0.50	31.07	1.69
YPS ₃	42.82	27.70	5.98	0.07	39.55	0.01
YPSe ₃	36.38	20.93	4.56	0.04	29.48	0.01
RhPS ₃	77.01	36.83	1.99	0.75	4.96	0.01
RhPSe ₃	69.57	32.44	1.87	0.55	5.03	0.21
IrPS ₃	88.26	37.81	1.97	0.72	3.90	0.50

10. The ferroelectric trantition path of **2D** ferroelectric MPX₃ members

Figure S6. Ferroelectric transition barrier diagram of stable ferroelectric MPX₃ members obtained by CI-NEB calculations.

The ferroelectric trantition path of 2D ferroelectric MPX3 members are obtained by employing the CI-NEB (Climbing Image Nudged Elastic Band) method, which was developed by H. Jónsson and G. Henkelman group [6] and implemented in VTST scripts [7]. The energy barriers are listed in Table 1 of the main text.

11. Stable anti-ferromagnetic (AFM) 2D MPX₃ members

Unit cell	· · · ·	preferred magnetic	
Formula	gap / eV	order	
$Co_2P_2O_6$	3.17	zigzag	
$Co_2P_2S_6$	2.12	zigzag	
$Co_2P_2Se_6$	1.67	zigzag	
$Co_2P_2Te_6$	0.81	zigzag	
$Cr_2P_2S_6$	1.83	Néel	
$Cr_2P_2Se_6$	0.90	Néel	
$Fe_2P_2S_6$	2.24	zigzag	
$Fe_2P_2Se_6$	1.85	zigzag	
$Mn_2P_2S_6$	2.85	Néel	
$Mn_2P_2Se_6$	2.14	Néel	
$Ni_2P_2S_6$	1.90	zigzag	
$Ni_2P_2Se_6$	1.55	zigzag	
Ni ₂ P ₂ Te ₆	0.96	zigzag	
$V_2P_2S_6$	3.20	Néel	
$V_2P_2Se_6$	2.51	Néel	
$V_2P_2Te_6$	1.47	Néel	

Table S3. Band gap and prefered magnetic order of stable 2D AFM MPX3 members

References

[1] K. N. Duerloo, M. T. Ong, and E. J. Reed. Intrinsic Piezoelectricity in Two-Dimensional Materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).

[2] M. N. Blonsky, H. L. Zhuang, A. K. Singh, and R. G. Hennig. Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials. ACS Nano 9, 9885–9891 (2015).

[3] K. Kim, S. Y. Lim, J. Kim, et. al. Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS₃ probed by Raman spectroscopy. 2D Mater. 6, 041001(2019).

[4] Z. Ni, A. V. Haglund, H. Wang, et. al. Imaging the Néel vector switching in the monolayer antiferromagnet MnPSe₃ with strain-controlled Ising order. Nat. Nanotechnol. 16, 782–787 (2021).

[5] C. Ho, T. Hsu and L. C. Muhimmah. The band-edge excitons observed in few-layer NiPS₃. npj 2D Mater. Appl. 5, 8 (2021).

[6] <u>https://theory.cm.utexas.edu/henkelman/</u>.

[7] https://theory.cm.utexas.edu/vtsttools/index.html