Supporting Information

Facile preparation of graphene@polyaniline nanofiber network/ oxidized carbon cloth composite for highperformance flexible solid-state supercapacitor

Shaohua Wang ^a, Yuying Li ^a, Xinli Guo ^{a*}, Qiang Xu ^a, Qiuping Fu ^a, Yanmei Zheng ^a,

Weijie Zhang ^a, Zhen Cao ^a, Ruiting Li ^a, and Jingxuan Ren ^a

- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
- b. School of Electronic Science & Engineering, Southeast University, Nanjing 210096, China.

Corresponding authors

*Emails: Xinli Guo, guo.xinli@seu.edu.cn

Number of pages: 5

Number of Figures: 7

Number of Tables: 2

Fig. S1. Digital images showing of (a) the process of impregnation of CC in mixed solution of H_2SO_4 and aniline, (b) the process of impregnation of MnO_2/OCC in mixed solution of H_2SO_4 and aniline, (c) substrate before impregnation(MnO_2/OCC), (d) substrate after impregnation (PANI-NFN/OCC). SEM images of (e, i) CC, (f, j) PANI-NFN/OCC, (g, k) PANI-NFN/OCC and (h, l) rGO@PANI-NFN/OCC.

Fig. S2. EDS spectra of (a) MnO₂/OCC and (b) PANI-NFN/OCC.

Fig. S3. (a) CV curves of MnO_2/OCC at a scan rate from 5 mV s⁻¹ to 100 mV s⁻¹. (b) GCD curves of MnO_2/OCC at a current density from 5 mA cm⁻² to 50 mA cm⁻². (c) CV curves of PANI-NFN/OCC at a scan rate from 5 mV s⁻¹ to 100 mV s⁻¹. (d) GCD curves of PANI-NFN/OCC at a current density from 5 mA cm⁻² to 50 mA cm⁻².

Fig. S4. Comparison of areal capacitance of MnO₂/OCC, PANI-NFN/OCC and rGO@PANI-NFN/OCC.

Fig. S5. Equivalent circuit model used for EIS data fitting. (R_s : combined series resistance; R_{ct}: charge-transfer resistance; W: Warburg element; C_{dl}: electrical-doublelayer capacitance; C_L : limit capacitance.)

Table S1. Parameter of equivalent circuit elements								
Samples	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	$W(\Omega)$	C_{dl} (mF)	C_L (mF)			
MnO ₂ /OCC	2.061	1.166	2.473	0.963	1.263			
PANI-NFN/OCC	2.04	0.221	1.069	3.446	0.189			
rGO@PANI-	1.833	0.082	0.468	3.583	1.501			
NFN/OCC								

Fig. S6. CV curves of rGO@PANI-NFN/OCC during the cycle stability after 1, 500,

1000, 1500, 2000, 2500 and 3000 cycles, respectively.

Sr.no	Electrode Materials	Electrolyte	Areal capacitance	Number of cycles	Ref.
				(Capacitance)	
1.	PANi-G-GCC	$1 \text{ M H}_2 \text{SO}_4$	4520 mF cm^{-2} (5 mA cm ⁻²)	5000(92.7%)	8
2.	PANI/CNT/papers	$1 \text{ M} \text{H}_2 \text{SO}_4$	1506 mF cm ⁻² (10 mA cm ⁻²)	11500(82%)	9
3.	FCC-PANI array-rGO	$1 \text{ M} \text{H}_2 \text{SO}_4$	471 mF cm ⁻² (0.5 mA cm ⁻²)	10000(75.5%)	19
4.	PANI/RGO/PMFT	$1 \text{ M} \text{H}_2 \text{SO}_4$	564 mF cm^{-2} (5 mA cm ⁻²)	10000(94.4)	55
5.	Lig/PANI/FGH/FCC	$1 \text{ M} \text{H}_2 \text{SO}_4$	1223 mF cm ⁻² (5 mV s ⁻¹)	5000(81%)	10
6.	HA/CNT/PANI fiber	$1 \text{ M} \text{H}_2 \text{SO}_4$	373 mF cm^{-2} (25 mV s ⁻¹)	3000(88.27%)	23
7.	FCC-PANI array-C	$1 \ \mathrm{M} \ \mathrm{H}_2 \mathrm{SO}_4$	1695 mF cm^{-2} (0.5 mA cm ⁻²)	10000(102%)	54
8.	PANI nanofiber array/CC	$1 \ \mathrm{M} \ \mathrm{H}_2 \mathrm{SO}_4$	1459.2 mF cm ⁻² (10 mV s ⁻¹)	2000(80%)	11
9.	PANI/graphene/textile-HCl	$1 \text{ M} \text{H}_2 \text{SO}_4$	1601 mF cm^{-2} (1 mA cm ⁻²)	10000(75%)	26
10.	strawberry-like FCC@PANI	$1 \text{ M} \text{H}_2 \text{SO}_4$	$1859.2 \text{ mF cm}^{-2} (0.2 \text{ mA cm}^{-2})$	10000(90.8%)	27
11.	PANI/GO/CC	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	1122.8 mF cm ⁻² (5 mV s ⁻¹)	2000(94.1%)	52
12.	rGO@PANI-NFN/OCC	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	4438 mF cm ⁻² (5 mA cm ⁻²)	3000(88.2%)	This work

Table S2. Comparison table for the energy storage performance of PANI/carbon material-based composites.

Fig. S7. (a) Areal capacitance of FSSCs based on rGO@PANI-NFN/OCC at different current density. (b) Nyquist plots of FSSCs based on rGO@PANI-NFN/OCC, and inset is the equivalent circuit mode of the FSSCs.