Nanoscale

ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxx

Supplemental materials for "Strain-induced magnetic phase transition, magnetic anisotropy switching and bilayer antiferromagnetic skyrmions in van der Waals magnet $CrTe_2$ "[†]

Dushuo Feng,
‡ a Zhong Shen, ‡ a Yufei Xue,
 a Zhihao Guan, a Runhu Xiao
 a and Changsheng Song* ab

^a Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, China. E-mail: cssong@zstu.edu.cn ^b Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, China.

[‡]These authors contributed equally.

1 Critical temperature of CrTe₂ monolayer under strain.

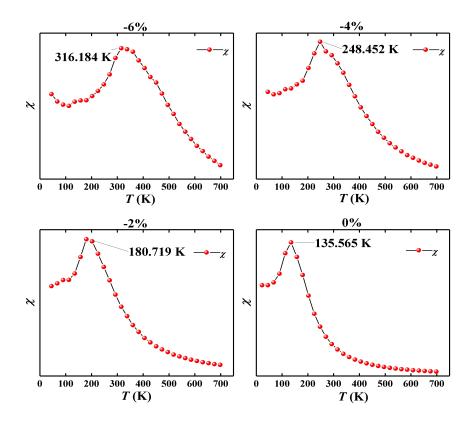


Fig. S1 The critical temperature (T_c) of CrTe₂ monolayer without strain and with compressive strain.

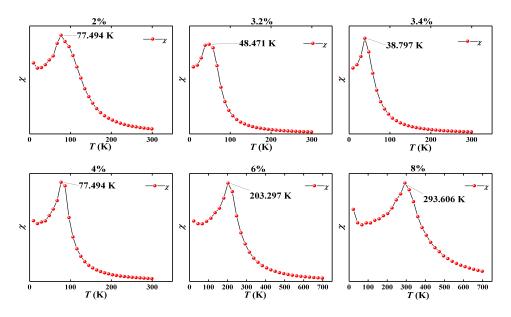


Fig. S2 The critical temperature (T_c) of CrTe₂ monolayer with tensile strain.

Table S1 Optimized lattice parameters a, Heisenberg exchange coefficients J_1 , J_2 , J_3 , single-ion anisotropy K and the magnetic moments of Cr atoms in CrTe₂ monolayer with different biaxial strains.

Strain (%)	a (Å)	J_1 (meV)	J_2 (meV)	J_3 (meV)	<i>K</i> (meV)	M_{Cr} (μ_B)
-6	3.40	38.41	-8.00	11.43	-2.14	2.95
-4	3.47	27.76	-6.68	8.30	-2.91	2.94
-2	3.55	18.96	-5.43	6.28	-2.98	2.97
0	3.62	10.48	-4.56	4.25	-2.12	3.00
2	3.69	2.99	-3.94	2.66	-1.34	3.04
4	3.76	-3.52	-3.46	1.55	-0.97	3.07
6	3.84	-11.07	-3.65	0.78	0.17	3.09
8	3.91	-19.14	-3.01	1.04	3.84	3.14

2 The Heisenberg exchange and Dzyaloshinskii-Moriya interactions in bilayer CrTe₂

According to Eq (S1) in the main text, the Heisenberg exchange interactions can be quantitatively estimated by calculating each total energy expression for various spin configurations as expressed below.

$$E_1 = (36J_1 + 36J_2 + 36J_3 + 6J_{z1} - 4J_{z2} - 12J_{z3})S^2 + E_0,$$
(S1)

$$E_2 = (-4J_1 - 12J_2 + 4J_3 + 6J_{z1} - 4J_{z2} - 12J_{z3})S^2 + E_0,$$
(S2)

$$E_3 = (4J_1 - 12J_2 + 4J_3 + 2J_{z1} - 4J_{z2} - 12J_{z3})S^2 + E_0,$$
(S3)

$$E_4 = (-4J_1 - 12J_2 + 4J_3 + 2J_{z1} + 0J_{z2} - 8J_{z3})S^2 + E_0,$$
(S4)

$$E_5 = (-4J_1 - 12J_2 + 4J_3 + 2J_{z1} + 4J_{z2} - 12J_{z3})S^2 + E_0,$$
(S5)

$$E_6 = (0J_1 - 12J_2 + 4J_3 + 4J_{z1} + 0J_{z2} - 12J_{z3})S^2 + E_0,$$
(S6)

$$E_7 = (0J_1 - 4J_2 + 4J_3 + 2J_{z1} - 4J_{z2} - 12J_{z3})S^2 + E_0.$$
(S7)

Here, J_1 , J_2 , J_3 are the Heisenberg exchange coefficients of first, second and third nearest neighbor of Cr atoms in the same layer, J_{z1} , J_{z2} , J_{z3} are the Heisenberg exchange coefficients of first, second and third nearest neighbor of Cr atoms in different layers, *K* is the single-ion anisotropy and E_0 is the non-magnetic section of the total energy. The calculated magnetic parameters are listed in Tab. S2

We choose the four states energy mapping method to calculate the Dzyaloshinskii-Moriya interaction (DMI) in bilayer CrTe₂. Take the *x* component of DMI (d_x) as an example. We choose a pair of the nearest Cr atoms labeled $\vec{S_1}$ and $\vec{S_2}$ to set the four spin configurations as shown in Tab. S3. Notice that the spins of all the other spin sites are the same and are along the *Z* direction. Then, d_x can be obtained by:

$$d_x = \frac{E_1 + E_4 - E_2 - E_3}{4S^2}.$$
(S8)

The calculated d_x , d_y and d_z are listed in Tab. S2

Table S2 Heisenberg exchange coefficients and DMI of bilayer $CrTe_2$.

J_1 (meV)	J_2 (meV)	J_3 (meV)	J_{z1} (meV)	J_{z2} (meV)	J_{z3} (meV)	d_x (meV)	d_y (meV)	d_z (meV)
-1.69	-0.70	-2.54	1.25	0.78	0.44	0.54	0.56	1.33

Table S3 Spin configurations used to calculate d_x , d_y and d_z .

DMI	d_x (meV)		$d_{y}(\mathbf{n})$	neV)	d_z (meV)		
States	S1	S2	S1	S2	S1	S2	
1	(0,S,0)	(0,0,S)	(0,0,S)	(S,0,0)	(S,0,0)	(0,S,0)	
2	(0,S,0)	(0,0,-S)	(0,0,S)	(-S,0,0)	(S,0,0)	(0,-S,0)	
3	(0,-S,0)	(0,0,S)	(0,0,-S)	(S,0,0)	(-S,0,0)	(0,S,0)	
4	(0,-S,0)	(0,0,-S)	(0,0,-S)	(-S,0,0)	(-S,0,0)	(0,-S,0)	