Supplementary Information

Impact of indirect transitions on

valley polarization in WS₂ and WSe₂

Rasmus H. Godiksen¹, Shaojun Wang^{1,2}, T.V. Raziman¹,

Jaime Gómez Rivas¹, Alberto G. Curto^{1,3,4*}

¹Dep. Applied Physics and Institute for Photonic Integration, Eindhoven University of Technology, Eindhoven, The Netherlands

²MOE Key Lab. of Modern Optical Technologies and Jiangsu Key Lab. of Advanced Optical Manufacturing

Technologies, School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China

³Photonics Research Group, Ghent University-imec, Ghent, Belgium

⁴Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium

* Corresponding author: A.G.Curto@TUe.nl

Table of contents

Supplementary Section S1: Room temperature photoluminescence	2
Resonant excitation of bilayer WSe ₂	2
Thickness-dependent polarization	2
Supplementary Section S2: Temperature-dependent photoluminescence	6
Bilayer photoluminescence spectra	6
Evidence of a dark ground state in bilayer WSe2	
Temperature-dependent polarization in multilayer WSe2	10

Supplementary Section S1: Room temperature photoluminescence

1. Resonant excitation of bilayer WSe2

Throughout our study, we report polarization values measured with excitation at a constant photon energy of 2.040 eV, which is close to resonance for bilayer WSe₂. Here, we check that bilayer WSe₂ does not show spin-valley polarization either under resonant excitation conditions (Supplementary Figure S1). We used an excitation energy of 1.681 eV, which is close to the WSe₂ bilayer K-K exciton emission around 1.62 eV.

Supplementary Figure S1. a, Polarization-resolved PL spectrum for bilayer WSe₂ under nearresonant excitation (1.681 eV) at room temperature. **b**, Degree of circular polarization as a function of photon energy. No DOCP is measurable.

2. Thickness-dependent polarization

We determine the thickness of our WS_2 and WSe_2 samples by using a combination of reflection contrast microscopy, atomic force microscopy, and photoluminescence measurements. Similarly, for both WS_2 and WSe_2 , the monolayers show bright emission due to their direct band gap. At room temperature, their emission spectrum shows a single peak. When increasing the thickness, a second peak emerges, which shifts to lower energy with an increasing layer thickness (Supplementary Figure S2). Only WS₂ shows an increase in the DOCP with thickness, whereas in WSe₂ the emission remains unpolarized for all thicknesses when excited with 2.04 eV (Supplementary Figure S3) and 1.796 eV (Supplementary Figure S4).

Supplementary Figure S2. Polarization-resolved PL spectra at room temperature for different thicknesses. **a**, WS₂. **b**, WSe₂. Spectra are vertically shifted by a constant for clarity.

Supplementary Figure S3. Degree of circular polarization at room temperature as a function of emission wavelength for a set of different thicknesses for **a**, WS₂, and **b**, WSe₂.

Supplementary Figure S4. Polarization-resolved PL spectra at room temperature for different thicknesses of WSe_2 excited with 1.796 eV. **a**, Thickness dependent spectra. **b**, Thickness vs the DOCP and the direct-indirect energy difference for the spectra in **a**.

Supplementary Section S2: Temperature-dependent photoluminescence

1. Bilayer photoluminescence spectra

When the temperature decreases, the two photoluminescence peaks shift with temperature (Supplementary Figure S4). In bilayer WS₂, the polarization also increases. However, in bilayer WSe₂, polarization only appears below T = 160 K (Supplementary Figure S5).

Supplementary Figure S5. Polarization-resolved PL spectra at different temperatures for bilayer samples. **a**, WS₂. **b**, WSe₂. Spectra are vertically shifted by a constant for clarity.

Supplementary Table S1. Fitting parameters obtained using Equation 2 in the main text in Figure 3. We contained the factor of 2 in the denominator of Equation 2 in the fitting parameter, *c*.

Material	С	Δ <i>E</i> (meV)
WS ₂	0.12	74.6
WSe ₂	0.076	72.5

2. Fitting using the O'Donnel equation

We fit the peak position as a function of temperature using two equations. Fitting using the Varshni equation1 was presented in the main text. Here, we fit the peak position using the O'Donnell equation¹

$$E_q(T) = E_q(0) - S\langle\hbar\omega\rangle [\coth(\langle\hbar\omega\rangle/2k_B T) - 1]$$
(S1)

where *T* is the temperature, $E_g(0)$ is the excitonic band gap, *S* is the Huang-Rhys factor, $\langle \hbar \omega \rangle$, is an average phonon energy, and k_B is the Boltzmann constant. The obtained fitting parameters are listed in Supplementary Table S2. Fitting using the O'Donnell equation yields as good a fit as with the Varshni equation, i.e., $R^2 = 0.9999$ when comparing the two fits. The main variation one might encounter between these two fitting methods will be expressed mainly in the range T=0-20 K, where we do not have several data points, as the band gap energy varies less in this range. The O'Donnell equation has a more profound theoretical background, and its fitting parameters are more well defined¹. The Huang-Rhys factor, *S*, describes the exciton-phonon coupling strength of a certain transition. Comparing the values for each transition in Supplementary Table S2, we note that the exciton-phonon coupling strength is much larger for transitions that involve electrons in the K-valley compared to the Λ -valley. Similarly, the average phonon energy is also smaller for Λ - Γ excitons, suggesting that Λ - Γ excitons are more resistant to scattering by phonons.

Material / Tr	ansition	$E_g(0)$ (eV)	S (-)	(ħω) (meV)
WS ₂	K-K	2.045	2.979	14.6
	Λ-Γ	1.737	0.997	2.0
WSe ₂	K-K	1.713	2.957	16.5
	К-Г	1.600	1.791	12.4
	Λ-Γ	1.546	0.991	6.3

Supplementary Table S2. Fitting parameters obtained using Equation S1 with the experimental data in Figure 3a-b.

3. Evidence of a dark ground state in bilayer WSe2

In W-based monolayers, the dark excitons lie lower in energy than the bright excitons and transitions between the lowest conduction band and the top valence band at K is spin-forbidden (dark K-K exciton) due to spin splitting². As evidence for bright-dark excitons in bilayer WSe₂, we observe a decrease of the K-K intensity with decreasing temperature consistent with reduced thermalization from dark to bright excitons^{2–4} (Supplementary Figure S6). We fit the measured integrated PL intensity as a function of temperature to the expression $I_{PL}(T)/I_{PL}(0) - 1 = C \exp(-E_D/k_BT)$, where $I_{PL}(T)$ is the measured intensity as a function of temperature, $I_{PL}(0)$ is the intensity at T = 0 K, C is a constant, k_B is the Boltzmann constant, and E_D is the characteristic energy barrier that defines the slope of the emission. From the fit, we obtain $E_D = 37.9$ meV, which is in good agreement with the bright-dark exciton splitting in monolayer WSe₂⁵. We expect a similar value for bilayer WSe₂ due to the limited effect of layer-layer interactions on the band structure near the K-point of the Brillouin zone.

Supplementary Figure S6. Spectrally integrated PL of the A exciton emission as a function of temperature for both circular polarizations when excited with a 2.04 eV laser. The drop in emission intensity with temperature is consistent with a dark exciton ground state. The fitting is described in the text.

4. Temperature-dependent polarization with varying thickness in WSe₂

For a fixed temperature, if we increase the WSe₂ thickness to three or four layers, the K- Λ conduction band difference should become smaller. Similarly, the onset of an increase in DOCP should occur at a higher temperature compared to a bilayer. We confirm this trend by measuring the emission DOCP for three and four layers of WSe₂ and by comparing it as a function of temperature to that of a bilayer (Supplementary Figure S7).

Supplementary Figure S7. Temperature-dependent DOCP measurements for 1, 2, 3, and 4 layers of WSe₂ showing an increase in the onset temperature of DOCP with increasing layer thickness. The 2, 3, and 4 layer data was acquired using 2.04 eV excitation. The monolayer data was acquired using 1.796 eV excitation. The fits are made by assuming a Boltzmann distribution for the K-K' intervalley scattering, see details in the main text.

References

- 1. O'Donnell, K. P. & Chen, X. Temperature dependence of semiconductor band gaps. *Appl. Phys. Lett.* **58**, 2924 (1991).
- 2. Zhang, X.-X., You, Y., Yang, S., Zhao, F. & Heinz, T. F. Experimental Evidence for Dark Excitons in Monolayer WSe₂. *Phys. Rev. Lett.* **115**, 257403 (2015).

- 3. Malic, E. *et al.* Dark excitons in transition metal dichalcogenides. *Phys. Rev. Mater.* **2**, 014002 (2018).
- 4. Zhang, M., Fu, J., Dias, A. C. & Qu, F. Optically dark excitonic states mediated exciton and biexciton valley dynamics in monolayer WSe₂. *J. Phys. Condens. Matter* **30**, 265502 (2018).
- 5. Wang, G. *et al.* In-Plane Propagation of Light in Transition Metal Dichalcogenide Monolayers: Optical Selection Rules. *Phys. Rev. Lett.* **119**, 047401 (2017).