Supporting Information for

Revealing the different effects of VIB transition metal X (X = Cr, Mo, W) on the electrochemical performance of Li-rich cathode Li₂MnO₃ by first-principles calculations

Shiwei Zhang^a, Jianchuan Wang^{a,*}, Huan Liu^b, Weibin Zhang^b, Lixian Sun^c, Yong

Du^a, Hans J Seifert^d, Ting Lei^a

^a State Key Laboratory of Powder Metallurgy, Central South University, 410083,

Changsha

^b Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan, China

° Guangxi Key Laboratory of Information Materials, Guilin University of Electronic

Technology, 541004, Guilin, China

^d Institute for Applied Materials, Karlsruhe Institute of Technology, Germany

Corresponding author: * jcw728@126.com

Magnetic configuration	Energy (eV/f.u.)
ferromagnetic	-37.1728
antiferromagnetic	-37.1642

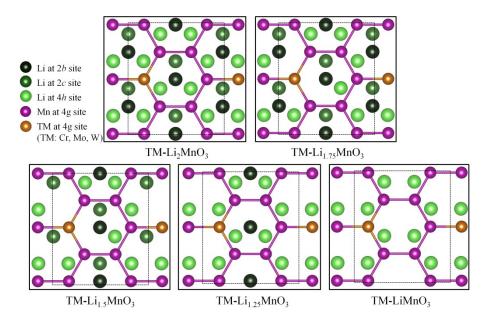
Table S1. The energies of Li_2MnO_3 with different magnetic configurations.

System	Lattice parameter (Å)			Volume (Å ³)
System	а	b	с	Volume (A [*])
Li ₂ MnO ₃	5.010	8.660	5.091	208.223
Cr- Li ₂ MnO ₃	5.015	8.659	5.094	208.441
Mo- Li ₂ MnO ₃	5.040	8.690	5.107	210.642
W- Li ₂ MnO ₃	5.036	8.729	5.104	211.633

Table S2. Lattice parameters and volumes of $\rm Li_2MnO_3$ and $\rm Li_2MnO_3$ with Cr, Mo and W dilute doping.

Table S3. The average Bader charges of doped TM, Mn and O near the TM in TM- Li_xMnO_3 (TM = Cr, Mo, W) systems.

System		Average Bader charge (e)			
	<i>x</i> —	Mn	0	TM (Cr, Mo, W)	
Li _x MnO ₃	2	+1.897	-1.226	+1.897	
	1.75	+1.903	-1.066	+1.899	
	1.5	+1.928	-0.975	+1.928	
	1.25	+1.940	-0.991	+1.938	
	1	+1.960	-0.954	+1.960	
Cr-Li _x MnO ₃	2	+1.897	-1.234	+1.982	
	1.75	+1.912	-1.034	+2.131	
	1.5	+1.933	-0.984	+2.115	
	1.25	+1.928	-0.993	+2.145	
	1	+1.958	-0.933	+2.117	
Mo-Li _x MnO ₃	2	+1.867	-1.294	+2.544	
	1.75	+1.889	-1.132	+2.726	
	1.5	+1.917	-1.087	+2.732	
	1.25	+1.918	-1.104	+2.725	
	1	+1.973	-1.066	+2.747	
W-Li _x MnO ₃	2	+1.779	-1.264	+2.962	
	1.75	+1.889	-1.177	+2.999	
	1.5	+1.914	-1.136	+3.003	
	1.25	+1.918	-1.149	+2.985	
	1	+1.952	-1.112	+3.001	


 Table S4. The average formation enthalpies of different Li vacancies in fully lithiated

System	Site	Formation enthalpy
		(eV)
	2b	4.78
Li ₂ MnO ₃	2c	4.67
	4h	4.62
Cr-Li ₂ MnO ₃	2b	4.30
	2c	4.21
	4h	4.18
Mo-Li ₂ MnO ₃	2b	2.89
	2c	2.79
	4h	2.75
W-Li ₂ MnO ₃	2 <i>b</i>	2.55
	2c	2.43
	4h	2.43

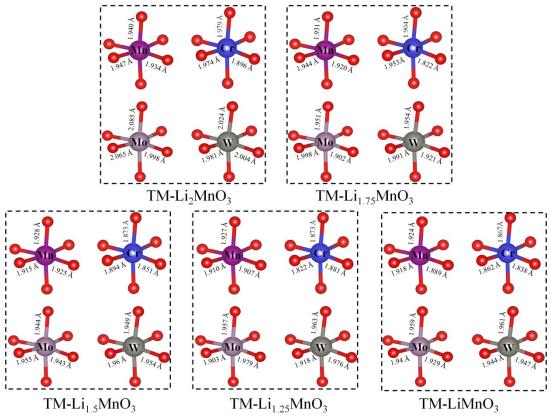

Li₂MnO₃ and TM-Li₂MnO₃(TM=Cr, Mo, W)

Table S5. The average formation enthalpies of O vacancies around TM at differentdelithiation stages in TM-Li2MnO3 (TM=Cr, Mo, W)

System	x	Average formation enthalpy (eV)
Li _x MnO ₃	2	2.59
	1.75	0.45
	1.5	0.10
	1.25	-0.07
	1	-0.63
Cr-Li _x MnO ₃	2	2.46
	1.75	-0.18
	1.5	-0.28
	1.25	-0.53
	1	-1.20
	2	3.40
	1.75	1.26
Mo-Li _x MnO ₃	1.5	0.29
	1.25	0.04
	1	-0.74
W-Li _x MnO ₃	2	3.71
	1.75	1.68
	1.5	0.68
	1.25	0.44
	1	-0.56

Figure S1. Illustrations of the partially delithiated structures of TM-Li_xMnO₃ (x = 2, 1.75, 1.5, 1.25, 1). The black dashed box represents a structural period. The delithiation sequence is described as follows: (1) some Li ions at the 4*h* sites are extracted (1.75 \leq x < 2), (2) some Li ions at the 2*b* sites are extracted (1. 5 \leq x < 1.75), (3) half of the Li ions at the 2*c* sites are extracted and the other half of Li ions at the 2*c* sites migrate to the 4*h* sites (1. 25 \leq x < 1.5), (4) all Li ions at the 2*b* sites are extracted (1 \leq x < 1.25).

Figure S2. The Bond lengths of TM-O at different stages of delithiation of TM-Li_xMnO₃ (x = 2, 1.75, 1.5, 1.25, 1).

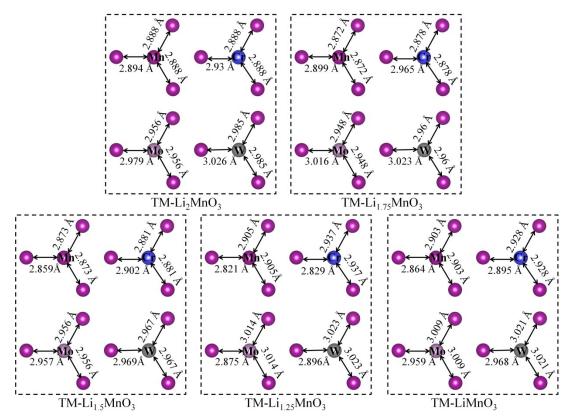
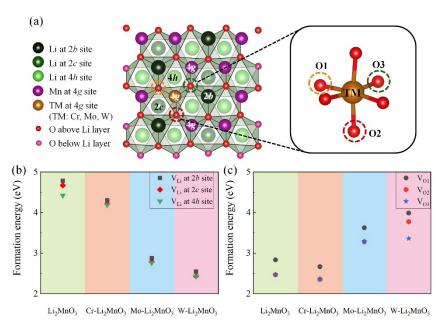
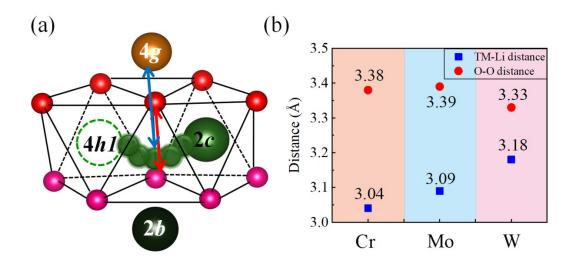




Figure S3. The distances between TM and its surrounding Mn at different stages of delithiation of TM- Li_xMnO_3 (x = 2, 1.75, 1.5, 1.25, 1).

Figure S4. (a) Illustrations of the nearest Li and O sites near the TM doping site in TM-Li₂MnO₃ (TM=Cr, Mo, W). (b) Formation enthalpies of different Li vacancies in TM-Li₂MnO₃. (c) Formation enthalpies of different O vacancies in TM-Li₂MnO₃.

,

Figure S5. (a) Illustrations of the maximum distance between the mobile Li and TM in path 2c - 4h1 (shown by the blue arrow), and the maximum distance between O in O-O dumbbell structure (shown by the red arrow). (b) The values of the distances.