Efficient Interlayer Confined Nitrate Reduction Reaction and Oxygen Generation Enabled by Interlayer Expansion

Ye Zhang, Mengqiu Xu, Xudong Xu, Xiaoyu Li, Genping Zhu, Gan Jia, Bingchuan Yang, Ruilian Yin, Peng Gao, and Wei Ye

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
E-mail: yewei@hznu.edu.cn; zhugenping@hznu.edu.cn

School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, China.
E-mail: yangbingchuan@lcu.edu.cn

School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.

†These authors contribute equally.
Fig. S1 AFM image of single α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ nanosheet.
Fig. S2 (a,b) SEM images of α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ nanosheets.
Fig. S3 TEM images of α-Ni$_{1-x}$Fe$_x$(OH)$_2$ nanosheets with different Fe doping levels: (a) $x=0$, (b) $x=0.053$, (c) $x=0.098$, (d) $x=0.119$, (e) $x=0.150$, (f) $x=0.171$.
Fig. S4 Nitrogen adsorption-desorption curves and pore size distributions curves of (a,b) α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ nanosheets and (c,d) α-Ni(OH)$_2$ nanosheets.
Fig. S5 XPS survey of α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ sample.
Fig. S6 (a) UV-vis absorption spectra based on spectrophotometry of Nessler’s reagent and (b) NH$_3$ concentration-absorbance curve at 420 nm of standard NH$_3$ solutions with a series of concentrations. (c) UV-vis absorption spectra for α-Ni$_{1-x}$Fe$_x$(OH)$_2$ samples acquired at –0.6 V. (d) UV-vis absorption spectra for α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ nanosheets acquired at –0.6 to –0.1 V.
Fig. S7 (a) UV-vis absorption spectra based on spectrophotometry of indophenol blue method and (b) NH$_3$ concentration-absorbance curve at 655 nm of standard NH$_3$ solutions with a series of concentrations. (c) NH$_3$ yield rates and NO$_3^-$-to-NH$_3$ FEs of α-Ni$_{1-x}$Fe$_x$(OH)$_2$ nanosheets at -0.6 V. (d) Potential-dependent NH$_3$ yield rates and FEs of α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ nanosheets.
Fig. S8 The comparison of LSV curves for α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ and pristine α-Ni(OH)$_2$ nanosheets recorded in KOH or the mixture of KNO$_3$ + KOH.
Fig. S9 (a) NH$_3$ yield rate and Faradaic efficiency for α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ sample recorded at –0.7 V. (b) XRD pattern of α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ after electrochemical catalysis at –0.7 V.
Fig. S10 Potential-dependent NH$_3$ production rates and FEs for α-Ni(OH)$_2$ nanosheets.
Fig. S11 (a) UV-vis absorption spectra and (b) concentration-absorbance curve of NO$_2^-$ solutions with a series of standard concentrations.
Fig. S12 Working curves for the determination of produced amount of (a) H$_2$ and (b) N$_2$.

(a) $y = 7283.1 - V_{H_2} + 7.4283$
$R^2 = 0.9994$

(b) $y = 2635.7 - V_{N_2} + 56.118$
$R^2 = 0.9992$
Fig. S13 (a) TEM image and (b) XRD pattern of α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ nanosheets after catalysis.
Fig. S14 (a) NH$_3$ yield rates and FEs of α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ nanosheets at (a) different concentrations of NO$_3^-$ and (b) pH.
Fig. S15 (a) XRD pattern and (b) SEM image of α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ nanosheets arrays grown on nickel foam.
Fig. S16 (a) the NTRR and (b) OER performance of α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ nanosheet arrays on nickel foam.
Fig. S17 $I-t$ curves using α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ nanosheets as (a) cathodic catalyst and (b) bifunctional catalyst.
Fig. S18 I-t curves using α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ nanosheets as bifunctional catalyst or cathodic catalyst and the corresponding energy efficiencies.
Fig. 19 Cyclic voltammetry curves recorded at different scan rates (20-140 mV s\(^{-1}\)):
(a) \(\alpha\text{-Ni}_{0.881}\text{Fe}_{0.119}(OH)_2\) nanosheets, (b) pristine \(\alpha\text{-Ni(OH)}_2\) nanosheets. (c) Comparative \(C_{dl}\) for \(\alpha\text{-Ni}_{0.881}\text{Fe}_{0.119}(OH)_2\) nanosheets and \(\alpha\text{-Ni(OH)}_2\) nanosheets derived from CV curves with different scan rates.
Fig. S20 EIS Nyquist plots for α-Ni$_{1-x}$Fe$_x$(OH)$_2$ nanosheets with different Fe doping levels ($x=0, 0.053, 0.098, 0.119, 0.150, 0.171$).
Fig. S21 Schematic illustration of atomic layer deposition to block the outmost layers of the layered α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ nanosheets.
Fig. S22 K 2p spectrum of α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ samples after NTRR test.
Fig S23. Zeta potentials of α-Ni$_{0.881}$Fe$_{0.119}$(OH)$_2$ nanosheets before or after catalysis.
Table S1. The mole ratios of Ni/Fe in the precursors and the corresponding x in the final α-Ni$_{1-x}$Fe$_x$(OH)$_2$ samples.

<table>
<thead>
<tr>
<th>Ni/Fe ratios</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:0.1</td>
<td>0.053</td>
</tr>
<tr>
<td>1:0.2</td>
<td>0.098</td>
</tr>
<tr>
<td>1:0.3</td>
<td>0.119</td>
</tr>
<tr>
<td>1:0.4</td>
<td>0.150</td>
</tr>
<tr>
<td>1:0.5</td>
<td>0.171</td>
</tr>
</tbody>
</table>