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Supporting Information

Figure S1 demonstrates the vertical and horizontal cuts extracted from the GISAXS data shown in 

Figure 1b. In the horizonal-cut, the peak with the highest intensity, around 0.4 nm-1, corresponds 

to the expected specular reflection (0.428 nm-1) and Yoneda peak (0.384 nm-1). The other peak 

observed between 0.58 nm-1 and 1.61 nm-1 are correspond to (020), (111) and (022) planes.
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Figure S1 Vertical (a) and horizontal (b) integration of Figure 1b respectively. The incident angle was 0.3° and 
scanned for 20 minutes. 

Figure S2 Top-view scanning electron microscopy image (a), and atomic force microscopy image (b) of the as-
deposited mesoporous silica thin film.
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Figure S3 I-V characteristics of 5 different TiN/mSiO2/Ag volatile memory devices under a CC of 100 μA.

Figure S4 I−V characteristics for five different devices taken from different regions across the sample. Bipolar 

switching is observed in the devices when higher compliances currents are used. 

The conduction mechanism of the nonvolatile memristor device is dominated by a space-charge-

limited-current (SCLC), as presented in Figure S4. The log I-log V clearly shows four conduction 

regions for the transition from the HRS to the LRS. At low applied voltage region V ≤ 0.25, the 

conduction mechanism is Ohmic, slope ~1, indicating charge transport via thermally generated 

free carriers. In the region of 0.3 ≤ V ≥ 0.8, the current increases and shows the voltage square 

dependence, slope ~2. This is attributed to a trap-controlled-space-charge-limited-current (TC-
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SCLC). At higher voltages in the region of 0.85 ≤ V ≥ 1.55, the current increases rapidly, slope ~3, 

switching the device to the LRS. We ascribe this to a trap-filled space-charge-limited-current (TF-

SCLC). In the case of the LRS, the conduction mechanism is Ohmic, featuring by the linear dependence 

of current with voltage, slope ~1.

Figure S5 I-V sweep for the TiN/mSiO2/Ag nonvolatile memristor device at CC of 5 mA demonstrating fits to the 

SCLC mechanism for the HRS to LRS transition.

Figure S6 A cross section TEM image for the switched TiN/mSiO2/Ag memristor device showing the conical 

nanoscale grown Ag filaments within the mSiO2 insulator thin film.
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A stretched-exponential based function (SEF) was used to evaluate the relaxation time of the 

volatile LRS state, as shown in Figure S7. The current level is modelled by an exponential equation 

. Here  is the memory (resistance) level at a given time ,  is the memory level 𝐼(𝑡) = 𝐼0𝑒
[ ‒ (𝑡 𝜏)𝛽]

𝐼(𝑡) 𝑡 𝐼0

at ,  is the characteristic relaxation time, which can be used to evaluate the forgetting rate.  𝑡= 0 𝜏 𝛽

is the stretch index and was fitted to be 0.5 in this work. The fitted relaxation time was found to 

be 600 µs.

Figure S7 Retention data recorded (dots) after stoppage of  SET pulses for the devices when in their volatile switching 

mode. The curve shown (solid line) is a stretched exponential fit (SEF) and indicates a relaxation time of 600 µs. 
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Figure S8 a) Letter “D”, b) “E”, c) “P”, d) “T” divided into 5 x 5 pixels for letter recognition. e-f) the corresponding 

current responses after pulse sequence application for mSiO2 memristor devices. 
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Figure S9 20 consecutive cycles for each of the six pulse streams, demonstrating the reproducible response of the 

mSiO2 memristor devices to the input pulse streams. 

The readout function is trained via the supervised learning algorithm to minimize the cross-entropy 

loss. Before the training process, the dataset, 570 groups currents-letter pairs, is experimentally 

measured from the memristors being fed with different pulse streams. Wherein, the current is 

scaled to the value with the unit of micron ampere (μA); the letters, “ADEPT”, are represented by 

the digits of 0-4 in the dataset, respectively (shown in Table S1). The obtained dataset is then split 

into three parts, which are training set (80%), validation set (10%) and testing set (10%). The 

training set is utilized to train the neural network. The validation set works to monitor whether the 

neural network is overfitting or underfitting. The last part, testing set, that has not been seen by the 

network, is to measure the network performance. In the training and validation process, a softmax 

activation function (Equation S1) follows the weight matrix to scale the probability vector’s value 

in the range of 0-1 with sum of 1. This non-linear operation is necessary and beneficial when 

applying the cross entropy (Equation S2) as loss function in a multinominal logistic regression. 

This loss function projects the probability distribution difference between prediction ( ) and �̂�
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ground truth ( ), so softmax could prevent the value loss function less than 0 and make the training 𝑦

process converge fast and improve the network robustness. Note that the softmax activation 

function is not used in the testing process, since the non-linear behavior is hard to carry out in the 

circuit. However, this removal of softmax will not change the classification results. Although 

softmax normalizes the sum of the probability vector and enlarges the probability difference 

among the values in the vector, it does not change the value orders in the probability vector, so the 

largest value still stays in the same index as before removing softmax. Therefore, we can train the 

neural network with softmax to boost the learning speed and stability, but only use the weight 

matrix to do the classifications in practices. The previous discussed neural network training is 

processed on a Windows PC with the CPU of Intel Core i9-9900K and the GPU of NVIDIA RTX 

2070 by the open-source machine learning package PyTorch. The detailed training 

hyperparameters are listed in Table  S2.
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Table S1 The mapping relationship between labels and letters.
Label 0 1 2 3 4
Letter A D E P T
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Table S2 The neural network training hyperparameters.

Hyperparameter Values

Epochs 200

Learning rate

Batch size 8

Optimizer Adam (default)

Loss function Cross entropy


