Second-order nonlinear optical properties of copper-based hybrid organic-inorganic perovskites induced by chiral amines

Bin Li,^{a#} Ying Yu,^{a#} Mingyang Xin,^b Jialiang Xu,^b Tianzhe Zhao,^a Huimin Kang,^a Guoxiang Xing,^a

Peisheng Zhao,^a Tianyong Zhang*^a and Shuang Jiang*^a

XRD measurements: The powder X-ray diffraction data were collected by Bruker D8 Advance with Cu K α radiation (λ = 1.5406 Å), and the thin film X-ray diffraction data were characterized by Rigaku SmartLab with Cu K α radiation (λ = 1.5406 Å).

Single Crystal X-ray diffraction: Single crystal X-ray diffraction data were collected by Rigaku diffractometer using Kappa goniometer system equipped with an Hypix6000HE detector with a Mo K α source ($\lambda = 0.71073$ Å) at 200 K. The bulk crystals are cut into small ones and the right micron-sized crystals (about 0.15 × 0.15 × 0.15 mm) are selected under the microscope.

Magnetic characterization: The SQUID-VSM magnetic measurement system has been used to characterize the magnetic properties of $(R-/S-NEA)_2CuCl_4$ and $(R-/S-CYHEA)_6Cu_3Cl_{12}$ bulk single crystals. Temperature-dependent magnetic flux curves were obtained with magnetic field of 10000 Oe. The magnetic-field dependent magnetic flux curves were tested with the temperature range of 2-30 K.

Linear optical measurements: Infrared spectrometry spectra were recorded by a Fourier transformation infrared spectrometer (FTIR, Thermo Fisher SCIENTIFIC, Nicolet). The UV-Vis spectra of single crystals were measured by Hitachi U-3010 UV–visible-spectrometer. The samples were ground into powder with BaSO₄ as the background. CD and the UV-Vis absorbance data were collected by Jasco J-810 spectrometer. The g-factor is calculated by the equation as followed:

$$g_{CD} = \frac{CD(mdeg)}{32982A}$$

Where CD is the absorption difference between the left and right circularly polarized light, and A refers to the absorption of the total incident light.

NLO Measurements: The NLO properties of chiral perovskite thin films were studied with a home-built set-up with a femtosecond laser pump (Mai Tai HP, 100 fs, 80 MHz, 800-1040 nm). The measurements were conducted under a reflection geometry at a 45 ° angle of both incidence and detection.

The calculation of NLO coefficient I: The effective NLO coefficient of $(R-NEA)_2CuCl_4$ and $(R-CYHEA)_6Cu_3Cl_{12}$ thin films are calculated by using Y-cut quartz as reference. The formula is as follows¹(p refers to perovskite thin film and q refers to Y-cut quartz):

$$\frac{d_{eff}^{\ p}}{d_{eff}^{\ q}} = \sqrt{\frac{I_{2\omega}^{\ p}I_{\omega}^{\ q}I_{\omega}^{\ q}n_{\omega}^{\ p}}{I_{2\omega}^{\ q}I_{\omega}^{\ p}L^{\ p}n_{\omega}^{\ q}}} \sqrt{\frac{n_{2\omega}^{\ p}}{n_{2\omega}^{\ q}}}$$

Here, $I_{2\omega}$ is the SHG response, I_{ω} is the incident light intensity, L is the effective crystal thickness, and n_{ω} and $n_{2\omega}$ are the refractive indices at the frequency ω and 2ω . The refractive indices for quartz are 1.552 and 1.535 at 460 nm and 920 nm² and that of (R-NEA)₂CuCl₄ thin film were measured to be 1.740 and 1.591 at 460 nm and 920 nm, and (R-CYHEA)₆Cu₃Cl₁₂ thin film were 1.708 and 1.648, respectively. Herein, we think of the thickness of Y-cut quartz is equal to perovskite films. The SHG signals of these samples were collected by using the same measurement conditions under 920 nm, 50 mW excitation. Therefore, $I_{\omega}^p = I_{\omega}^q$. The detected SHG intensitis of Y-cut quartz, (R-NEA)₂CuCl₄ and (R-CYHEA)₆Cu₃Cl₁₂ thin film are 8825, 39259 and 2465.7 cps, respectively. d_{eff}^{q} is 0.6 pm V⁻¹. Thus, the NLO coefficient of (R-NEA)₂CuCl₄ thin film is determined to be 2.31 pm V⁻¹, and the NLO coefficient of (R-CYHEA)₆Cu₃Cl₁₂ thin film is determined to be 0.60 pm V⁻¹.

The calculation of NLO coefficient II: The effective NLO coefficient of $(R-NEA)_2CuCl_4$ and $(R-CYHEA)_6Cu_3Cl_{12}$ thin films are calculated by using Y-cut quartz as a reference. According to Xu's work³, the electric field of reflected SHG intensity of perovskite films can be calculated by the equation⁴:

$$E_{rp} = \frac{n_{\omega} \cos\theta - n_{2\omega} \cos\theta_t}{\cos\theta + n_{2\omega} \cos\theta_r} \times \frac{P_{NLp}^{(2)}}{\varepsilon(n_{\omega}^2 - n_{2\omega}^2)} + \frac{n_{2\omega} \sin\theta_t}{\cos\theta + n_{2\omega} \cos\theta_r} \times \frac{P_{NLt}^{(2)}}{\varepsilon n_{2\omega}^2}$$

Where $P_{NLp}^{(2)}$ is the second-order nonlinear polarization parallel to the p-polarization of the transmitted fundamental wavelength and $P_{NLt}^{(2)}$ is the second-order nonlinear polarization parallel to the direction of the transmitted fundamental wavelength propagation, n_{ω} and $n_{2\omega}$ are the refractive indices at the frequency ω and 2ω . θ_r is the reflection angle, and θ_i is the incident angle. θ_t is the refraction angle of fundamental wavelength and θ is the angle of the SHG wavelength. These angles can be calculated by the following formula: $n_{\omega}sin\theta_t = n_{2\omega}sin\theta = sin\theta_r = sin\theta_i$

For quartz, β refers to the NLO susceptibility, and β =0.6 pm V⁻¹.

$$P_{NLp,q}^{(2)} = -\varepsilon((E_X^2 - E_y^2)\cos\theta_t + 2E_x E_y \sin\theta_t)\beta$$
$$P_{NLt,q}^{(2)} = \varepsilon((E_X^2 - E_y^2)\sin\theta_t - 2E_x E_y \cos\theta_t)\beta$$

where E_x and E_y are the electric fields of the fundamental pump in quartz, which can be described by Fresnel formula:

$$E_{x} = \frac{2\cos\theta_{i}\cos\theta_{t}}{\cos\theta_{t} + n_{\omega}\cos\theta_{i}}E_{i}$$
$$E_{y} = -\frac{2\cos\theta_{i}\sin\theta_{t}}{\cos\theta_{t} + n_{\omega}\cos\theta_{i}}E_{i}$$

The refractive indices for quartz are 1.552 and 1.535 at 460 nm and 920 nm, $\theta_i = \theta_r = 45$ °, $\theta_t = 27.41$ °, $\theta = 27.10$ °.

$$E_{rp,q} = 0.4484\beta E_i^2$$

For perovskite, we assumed that the $P_{NLt}^{(2)}$ is negligible and $P_{NLp}^{(2)} = \varepsilon d_{eff} E_p^2$

$$E_p = \frac{2\cos\theta_i}{\cos\theta_t + n_\omega \cos\theta_i} E_i$$

The refractive indices of $(R-NEA)_2CuCl_4$ thin film were measured to be 1.740 and 1.591 at 460 nm and 920 nm, respectively. $\theta_i = \theta_r = 45^\circ$, $\theta_t = 26.39^\circ$, $\theta = 23.98^\circ$.

So $E_{rp,R-NEA} = 0.04833 d_{eff} E_i^2$. The detected SHG intensitis of Y-cut quartz and (R-NEA)₂CuCl₄ thin film are 8825, 39259 cps, respectively. Therefore, the d_{eff} of (R-NEA)₂CuCl₄ thin film is determined to be 11.74 pm V⁻¹.

The refractive indices of (R-CYHEA)₆Cu₃Cl₁₂ thin film were measured to be 1.760 and 1.852 at 460 nm and 920 nm, respectively. $\theta_i = \theta_r = 45^\circ$, $\theta_t = 25.41^\circ$, $\theta = 24.46^\circ$. So $E_{rp,R-CYHEA} = 0.04677 d_{eff} E_i^2$.

The detected SHG intensitis of (R-CYHEA)₆Cu₃Cl₁₂ thin film are 2465.7 cps. So the d_{eff} of (R-CYHEA)₆Cu₃Cl₁₂ thin film is determined to be 3.04 pm V⁻¹.

Table S1 Crystal data and structure refinement for (R-/S-NEA)₂CuCl₄.

Identification code	(R-NEA) ₂ CuCl ₄	(S-NEA) ₂ CuCl ₄
Empirical formula	$C_{24}H_{28}Cl_4CuN_2$	$C_{24}H_{28}Cl_4CuN_2$
Formula weight	549.859	549.859
Temperature/K	199.99(10)	199.98(10)
Crystal system	monoclinic	monoclinic
Space group	P2 ₁	P2 ₁
a/Å	12.6402(4)	12.6550(3)
b/Å	7.1773(2)	7.1832(2)
c/Å	14.0019(4)	13.9997(3)
α/°	90	90
β/°	94.296(3)	94.341(2)
γ/°	90	90
Volume/Å ³	1266.72(7)	1268.97(5)
Z	2	2
$\rho_{calc}g/cm^3$	1.442	1.439
µ/mm⁻¹	1.299	1.296
F(000)	568.0	568.0
Crystal size/mm ³	$0.15 \times 0.15 \times 0.15$	$0.150 \times 0.150 \times 0.150$
Radiation	Μο Κα (λ = 0.71073)	Μο Κα (λ = 0.71073)
2⊖ range for data collection/°	4.18 to 61.12	4.18 to 61.2
Index ranges	-17 ≤ h ≤ 17, -9 ≤ k ≤ 10, -	$-17 \leq h \leq 15, -10 \leq k \leq 10,$
inuex ranges	19 ≤ l ≤ 17	-18 ≤ l ≤ 19

Reflections collected	18221	16628	
Indonandant reflections	6385 [R _{int} = 0.0267,	6250 [R _{int} = 0.0263,	
independent reflections	R _{sigma} = 0.0296]	R _{sigma} = 0.0286]	
Data/restraints/parameters	6385/1/146	6250/1/130	
Goodness-of-fit on F ²	1.012	2.693	
Final R indexes [1>-2a (1)]	$R_1 = 0.0813$, $wR_2 =$	P = 0 1777 wP = 0 5066	
	0.1951	$R_1 = 0.1777, WR_2 = 0.3000$	
Final R indexes [all data]	$R_1 = 0.0838, wR_2 =$	R 0.1804 wR 0.5143	
	0.1973	$N_1 = 0.1004, WN_2 = 0.5145$	
Largest diff. peak/hole / e Å ⁻³	4.06/-1.99	13.95/-1.93	
Flack parameter	0.028(4)	0.112(4)	

Table S2 Crystal data and structure refinement for $(R-/S-CYHEA)_6Cu_3Cl_{12}$.

Identification code	(R-CYHEA) ₆ Cu ₃ Cl ₁₂	(S-CYHEA) ₆ Cu ₃ Cl ₁₂
Empirical formula	$C_{48}H_{108}CI_{12}Cu_3N_6$	$C_{48}H_{108}CI_{12}Cu_3N_6$
Formula weight	1385.42	1385.42
Temperature/K	200	200.00(10)
Crystal system	monoclinic	monoclinic
Space group	12	12
a/Å	20.4991(7)	20.4795(5)
b/Å	18.1779(6)	18.1694(4)
c/Å	19.6327(7)	19.6068(6)
α/°	90	90
β/°	107.114(4)	107.039(3)
γ/°	90	90
Volume/ų	6978.3(8)	6975.5(3)
Z	4	4
$ ho_{calc}g/cm^3$	1.319	1.319
µ/mm⁻¹	5.544	1.400
F(000)	2916.0	2916.0
Crystal size/mm ³	$0.15 \times 0.15 \times 0.15$	$0.15 \times 0.15 \times 0.15$
Radiation	ΜοΚα (λ = 0.71073)	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.546 to 134.158	4.16 to 61.51
Index ranges	-24 ≤ h ≤ 24, -21 ≤ k ≤	-27 ≤ h ≤ 28, -25 ≤ k ≤ 25, -
	21, -22 ≤ ≤ 23	24 ≤ l ≤ 26
Reflections collected	86146	65436
Independent reflections	12326 [R _{int} = 0.0915, R _{sigma} =	17343 [R _{int} = 0.0402, R _{sigma} =

	0.0391]	
Data/restraints/parame ters	12326/575/637	17343/795/666
Goodness-of-fit on F ²	1.097	1.089
Final R indexes [I>=2σ (I)]	R ₁ = 0.0640, wR ₂ = 0.1851	R ₁ = 0.0398, wR ₂ = 0.1078
Final R indexes [all data]	R ₁ = 0.0743, wR ₂ = 0.1940	$R_1 = 0.0550$, $wR_2 = 0.1144$
Largest diff. peak/hole / e Å ⁻³	0.57/-0.77	0.53/-0.45
Flack parameter	0.07(3)	0.013(6)

Figure S1 The digital photograph of (a) (R-

NEA)₂CuCl₄ single crystal. (b) (R-CYHEA)₆Cu₃Cl₁₂

single crystal.

Figure S2 The distorted $[Cu_3Cl_{10}]^{4-}$ structure of $(R-CYHEA)_6Cu_3Cl_{12}$.

Figure S3 The zoomed-in regions of PXRD patterns of (a) (R-NEA)₂CuCl₄ and (b) (R-CYHEA)₆Cu₃Cl₁₂.

Figure S4 The PXRD patterns of (a) $(R-/S-NEA)_2CuCl_4$ and (b) $(R-/S-CYHEA)_6Cu_3Cl_{12}$ single crystals before and after stored in the air for 6 months.

Figure S5 The FTIR spectra of (a) $(R-/S-NEA)_2CuCl_4$ and (b) $(R-/S-CYHEA)_6Cu_3Cl_{12}$ single crystals. The Raman spectra of (c) $(R-/S-NEA)_2CuCl_4$ and (d) $(R-/S-CYHEA)_6Cu_3Cl_{12}$ single crystals.

Figure S6 The digital photo of (a) $(R-NEA)_2CuCl_4$ and (d) $(R-CYHEA)_6Cu_3Cl_{12}$ thin films. The SEM image of (b, c) $(R-NEA)_2CuCl_4$ and (e, f) $(R-CYHEA)_6Cu_3Cl_{12}$ thin films.

Figure S7 The XRD patterns of $(R-NEA)_2CuCl_4$ and $(R-CYHEA)_6Cu_3Cl_{12}$ thin films in comparison to their single crystals.

Figure S9 The diagram of home-built optical setup with a femtosecond pulsed laser.

Figure S10 The wavelength-dependent SHG response of Y-cut quartz.

Figure S11 The pumping power-dependent SHG response of (a) $(R-NEA)_2CuCl_4$ and (b) $(R-CYHEA)_6Cu_3Cl_{12}$ thin film. The green region indicates the quadratic dynamic range and the yellow region indicates the damage region.

- 1. Y. Duan, C. Ju, G. Yang, E. Fron, E. Coutino-Gonzalez, S. Semin, C. Fan, R. S. Balok, J. Cremers and P. Tinnemans, *Adv. Funct. Mater.*, 2016, **26**, 8968-8977.
- 2. G. Ghosh, Opt. Commun., 1999, **163**, 95-102.
- 3. Y. Zheng, J. Xu and X. H. Bu, Adv. Opt. Mater., 2022, **10**, 2101545.
- 4. W. T. Welford, *Phys. Bull.*, 1985, **36**, 178-178.