Supporting Information

Steering Lu₃N cluster in C₇₆₋₇₈ cages : Cluster configuration dominated by

cage transformation

Pengwei Yu, Shuaifeng Hu, Xinyue Tian, Wangqiang Shen, Pengyuan Yu, Kun Guo Yunpeng Xie, Lipiao Bao* and Xing Lu*

State Key Laboratory of Materials Processing and Die & Mould Technology, School of

Materials Science and Engineering, Huazhong University of Science and Technology, 1037

Luoyu Road, Wuhan, 430074 China. E-mail: baol@hust.edu.cn; lux@hust.edu.cn

Table of Contents

High-performance Liquid Chromatography (HPLC) Separation Processes of

Lu₃N@C_{76, 78}.

Figure S1. Isolation of fullerene extract.

Figure S2. Isolation of Lu₃N@*C*_s(17490)-C₇₆.

Figure S3. Isolation of Lu₃N@*C*₂(22010)-C₇₈.

Figure S4. Isolation of $Lu_3N@D_{3h}(5)$ -C₇₈.

Table S1. Crystallographic data of $Lu_3N@C_s(17490)-C_{76}\cdot Ni^{II}(OEP)$, $Lu_3N@C_2(22010)-C_{78}\cdot Ni^{II}(OEP)$, and $Lu_3N@D_{3h}(5)-C_{78}\cdot Ni^{II}(OEP)$.

Figure S5. Positions of the disordered lutetium atoms in Lu₃N@ $C_s(17490)$ -C₇₆, Lu₃N@ $C_2(22010)$ -C₇₈, and Lu₃N@ $D_{3h}(5)$ -C₇₈.

Table S2. The fractional occupancies of the Lu positions in Lu₃N@ $C_s(17490)$ -C₇₆, Lu₃N@ $C_2(22010)$ -C₇₈, and Lu₃N@ $D_{3h}(5)$ -C₇₈.

Figure S6. Structures of the major Lu₃N sites in Lu₃N@ $C_s(17490)$ -C₇₆ and Lu₃N@ $C_2(22010)$ -C₇₈ with respect to the cages and the porphyrins.

Figure S7. Structural relationship between $C_2(22010)$ - C_{78} and $D_{3h}(5)$ - C_{78} .

Figure S8. Drawings showing the planarity of Lu₃N cluster in (a) $C_s(17490)$ -C₇₆ and (b) $C_2(22010)$ -C₇₈, and the deviation of the Lu₃N unit from planarity in (c) $D_{3h}(5)$ -C₇₈.

High-performance Liquid Chromatography (HPLC) Separation Processes of Lu₃N@C_{76, 78}. Lu₃N@C_{76, 78} isomers were isolated by a multiple-stage HPLC process using toluene as the eluent. The first stage was performed on a Buckyprep column (20 mm × 250 mm, Cosmosil Nacalai Tesque), and three fractions named as Fr5, Fr6 and Fr8 were collected (Fig. S1). Then, Fr6 was injected into a Buckyprep column (20 mm × 250 mm, Cosmosil Nacalai Tesque) for the second stage separation, and a truncated fraction named as Fr6-4 was collected to increase the proportion of Lu₃N@C_s(17490)-C₇₆ (Fig. S2a). Fr6-4 was then injected into a 5PBB column (20 mm × 250 mm, Cosmosil Nacalai Tesque), and Lu₃N@C_s(17490)-C₇₆ was finally obtained (Fig. S2b).

In the second stage for the purification of Lu₃N@ $C_2(22010)$ -C₇₈, a Buckyprep-M column (20 mm × 250 mm, Cosmosil Nacalai Tesque) was used to separate Fr8, then a fraction named as Fr8-2 was collected (Fig. S3a). Fr8-2 was injected into a Buckyprep-M column (20 mm × 250 mm, Cosmosil Nacalai Tesque), and a fraction named as Fr8-2-2 was collected (Fig. S3b). In the last, Fr8-2-2 was injected into a Buckyprep column (20 mm × 250 mm, Cosmosil Nacalai Tesque), and pure Lu₃N@ $C_2(22010)$ -C₇₈ was finally obtained (Fig. S3c).

Moreover, Fr5 was injected into a Buckyprep-M column (20 mm × 250 mm, Cosmosil Nacalai Tesque), a fraction named as Fr5-3 was obtained (Figure S4a). In the third stage, fraction Fr5-3 was injected into a Buckyprep column (20 mm × 250 mm, Cosmosil Nacalai Tesque), and a truncated fraction Fr5-3-3 was collected to increase the proportion of Lu₃N@ D_{3h} (5)-C₇₈ (Fig. S4b). After that, Fr5-3-3-3 was injected into a Buckyprep column (10 mm × 250 mm, Cosmosil Nacalai Tesque), and pure Lu₃N@ D_{3h} (5)-C₇₈ was obtained (Fig. S4c).

Fig. S1 Isolation scheme of the fullerene extract on a Buckyprep column. Conditions: 20 mL injection volume; 10 mL/min toluene flow; 330 nm detecting wavelength.

Fig. S2 Isolation schemes of $Lu_3N@C_s(17490)-C_{76}$. (a) Recycling HPLC chromatogram of Fr6 on a Buckyprep column. Conditions: 15 mL injection volume; 10 mL/min toluene flow. (b) HPLC chromatogram of Fr6-4 on a 5PBB column. Conditions: 10 mL injection volume; 10 mL/min toluene flow. (All of the detection wavelengths are 330 nm.)

Fig. S3 Isolation schemes of Lu₃N@ $C_2(22010)$ -C₇₈. (a) HPLC chromatogram of Fr8 on a Buckyprep-M column. Conditions: 20 mL injection volume; 10 mL/min toluene flow. (b) Recycling HPLC chromatogram of Fr8-2 on a Buckyprep-M column. Conditions: 15 mL injection volume; 10 mL/min toluene flow. (c) Recycling HPLC chromatogram of Fr8-2-2 on a Buckyprep column. Conditions: 115 mL injection volume; 10 mL/min toluene flow. (All of the detection wavelengths are 330 nm.)

Fig. S4 Isolation schemes of $Lu_3N@D_{3h}(5)-C_{78}$. (a) HPLC chromatogram of Fr5 on a Buckyprep-M column. Conditions: 20 mL injection volume; 10 mL/min toluene flow. (b) Recycling HPLC chromatogram of Fr5-3 on a Buckyprep column. Conditions: 20 mL injection volume; 10 mL/min toluene flow. (c) Recycling HPLC chromatogram of Fr5-3-3 on a Buckyprep column. Conditions: 5 mL injection volume; 4 mL/min toluene flow. (All of the detection wavelengths are 330 nm.)

	Lu ₃ N@C _s (17490)-C ₇₆ ·Ni ^{II} (OEP)	Lu ₃ N@C ₂ (22010)-C ₇₈ ·Ni ^{II} (OEP)	$Lu_3N@D_{3h}(5)-C_{78}\cdot Ni^{II}(OEP)$	
<i>Т</i> , К	100(2)	100(2)	100(2)	
λ, Å	0.7336	0.7336	0.7336	
color/habit	black/block	black/block	black/block	
cryst size, mm	0.14×0.12×0.08	0.25×0.20×0.11	0.04×0.02×0.02	
empirical formula	C ₁₂₄ H ₅₆ Lu ₃ N ₅ Ni	$C_{124}H_{53}Lu_3N_5Ni_{1.04}S_2$	C ₁₂₃ H ₅₃ Lu ₃ N ₅ Ni	
fw	2199.35	2262.45	2184.32	
cryst system	monoclinic	monoclinic	monoclinic	
space group	<i>C</i> 2/ <i>m</i>	C2/m	<i>C</i> 2	
a, Å	25.1131(5)	26.440(5)	25.3130(3)	
b, Å	15.0135(3)	16.808(3)	15.0309(18)	
<i>c</i> , Å	19.6714(5)	17.861(4)	19.6730(2)	
a, deg	90	90	90	
β , deg	93.8870(10)	107.97(3)	95.136(4)	
γ, deg	90	90	90	
$V, Å^3$	7399.8(3)	7550(3)	7455.0(15)	
Z	4	4	4	
$ ho, \mathrm{g/cm^3}$	1.974	1.989	1.946	
μ, mm ⁻¹	4.632	4.611	4.597	
$R_1 (\mathbf{I} > 2 \backslash \mathbf{s}(\mathbf{I}))$	0.1197 (7309)	0.0812(6688) 0.1229 (12302		
wR ₂ (all data)	0.3260 (8526)	0.2168(7194)	0.3040 (13577)	

Table S1. Crystallographic data of Lu₃N@ $C_s(17490)$ -C₇₆·Ni^{II}(OEP), Lu₃N@ $C_2(22010)$ -C₇₈·Ni^{II}(OEP), and Lu₃N@ $D_{3h}(5)$ -C₇₈·Ni^{II}(OEP).

Fig. S5 Positions of the disordered lutetium sites in (a) $Lu_3N@C_s(17490)-C_{76}$, (b) $Lu_3N@C_2(22010)-C_{78}$, and (c) $Lu_3N@D_{3h}(5)-C_{78}$ relative to the cage orientation. The Lu sites labeled with "A" are generated by crystallographic operation and a part of the cages are omitted for clarity.

EMFs	Fractional occupancy of the Lu positions								
	Lu1/Lu1A	Lu2/Lu2A	Lu3/Lu3A	Lu4/Lu4A	Lu5/Lu5A	Lu6/Lu6A	Lu7		
	0.24	0.24	0.11	0.10	0.09	0.06	0.06		
Lu ₃ N@C _s (17490)-C ₇₆	Lu8/Lu8A	Lu9/Lu9A	Lu10/Lu10A	Lu11					
	0.04	0.04	0.02	0.02					
	Lu1/Lu1A	Lu2	Lu3/Lu3A	Lu4/Lu4A	Lu5/Lu5A	Lu6/Lu6A	Lu7		
	0.22	0.28	0.27	0.26	0.15	0.15	0.12		
Lu ₃ N@C ₂ (22010)-C ₇₈	Lu8/Lu8A	Lu9/Lu9A	Lu10/Lu10A	Lu11/Lu11	Lu12/Lu12A	Lu13			
	0.06	0.05	0.05	0.04	0.04	0.03			
	Lu1	Lu2	Lu3	Lu4	Lu5	Lu6	Lu7		
	0.36	0.54	0.33	0.37	0.36	0.31	0.13		
L., N@D (5) C	Lu8	Lu9	Lu10	Lu11	Lu12	Lu13	Lu14		
Lu ₃ N(<i>WD</i> _{3h} (5)-C ₇₈	0.11	0.11	0.10	0.08	0.06	0.05	0.04		
	Lu15	Lu16							
	0.04	0.03							

Table S2. The fractional occupancies of the Lu positions in Lu₃N@ $C_s(17490)$ -C₇₆,Lu₃N@ $C_2(22010)$ -C₇₈, and Lu₃N@ $D_{3h}(5)$ -C₇₈.

Fig. S6 Relationship of the major Lu₃N sites in (a, c) Lu₃N@ $C_s(17490)$ -C₇₆ and (b, d) Lu₃N@ $C_2(22010)$ -C₇₈ to the cages and the porphyrins. The Lu₃N planes are marked in red.

Fig. S7 Structural relationship between $C_2(22010)$ -C₇₈ and $D_{3h}(5)$ -C₇₈. The same parts of the two cages are marked in violet. The fused pentagons are highlighted in orange.

Fig. S8 Drawings showing the planarity of Lu₃N cluster in (a) $C_s(17490)$ -C₇₆ and (b) $C_2(22010)$ -C₇₈, and the deviation of the Lu₃N unit from planarity in (c) $D_{3h}(5)$ -C₇₈.