Electronic Supplementary Information

Etching Suppression as a Means to Pt Dendritic Ultrathin

Nanosheets by Seeded Growth

Deliang Yi,^{a,b}, Cécile Marcelot^c, Idaline Romana^b, Marine Tassé^d, Pier-Francesco Fazzini^a, Laurent Peres^a, Nicolas Ratel-Ramond^c, Philippe Decorse^d Bénédicte Warot-Fonrose^c, Guillaume Viau^a, Philippe Serp^{b*}, and Katerina Soulantica^{a*}

b LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France

c CEMES-CNRS, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse, France

d Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France

e. ITODYS, UMR 7086, CNRS, Université de Paris, F-75013 Paris, France

Figure S1. Concave nanocubes obtained by reduction of $PtCl_2$ in the presence of ODA at 20 °C under 3 bar H₂ (7 days reaction).

a. Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France

Figure S2. Time dependent evolution of the Pt multipods. (a) 1 h reaction. (b) 4 h reaction. (c) 8 h reaction.

Figure S3. Agglomerated seeds after 7 days reaction.

Figure S4. HRTEM image showing the presence of a $\{111\}$ twin plane on a nano-object obtained after 8 h of reaction.

Figure S5. UMNS morphological characteristics. (a) diameter. (b) shape. (c) branch diameter.

Figure S6. XRD of the Pt UMNS.

Figure S7. Time dependent evolution of the Pt UMNS. (a) 24 h reaction. (b) 48 h reaction; (c) 4 days reaction. (c) 7 days reaction.

Figure S8. UMNS thickness. (a) TEM image of a Pt UMNS. (b) the corresponding thickness profile along line designated by the white arrow obtained through EFTEM. Point scattering is due to an average measurement of the thickness over all the pixels of the width of the

arrow. The UMNS thickness is obtained by subtracting the carbon membrane thickness (about 11 nm) from the total thickness (about 12 nm). (c) AFM of 6 UMNS and their corresponding mean thickness, as obtained by the profile measurement through the AFM Gwyddion program.

Figure S9. Pt UMNS XPS spectra. (a) N 1s region. (b) Cl 2p region. (c) Pt 4f region.

Figure S10. Pt seeds XPS spectra in (a) N 1s region. (b) Cl 2p region. (c) Pt 4f region.

Figure S11. XPS spectra in C 1s region. (a, b) Pt seeds. (c, d) Pt UMNS.

Table S1 Results of fitting of the XPS spectrum in N 1s region of Pt-UMNS and Pt seeds.

Material	N 1s B.E. / eV			F	WHM / e	V	N _A %	N _Β %	N _c %
Pt UMNS	N _A	N _B	Nc	NA	N _B	Nc			
	398.0	399.6	401.2	1.64	1.69	1.78	13.5	28.5	58.0
Pt seeds	398.2	400.2	-	1.7	1.76	-	26.5	73.5	-

Table S2 Results of fitting of the XPS spectrum in Cl 2p region of Pt UMNS and Pt seeds.

Material	Cl 2p _{3/2} B.E. / eV		FWHM / eV		Cl 2p _{1/2} B.E. / eV		FWHM / eV		Cl _A %	Cl _B %
Pt UMNS	Cl _A	Cl _B	Cl _A	Cl _B	Cl _A	Cl _B	Cl _A	Cl _B		
	197.7	200.0	1.4	1.2	199.3	201.5	1.4	1.2	83	17
Pt seeds	198.4	-	1.6	-	200.2	-	1.6	-	100	-

Material	C 1	s B.E. / e	٧	F	WHM / e	V	С _А %	С _в %	С _с %
Pt UMNS	C _A	Св	Cc	C _A	Св	Cc			
	284.8	286.2	288.0	1.22	1.49	1.43	87.5	10	2.5
Pt seeds	284.8	286.4	288.5	1.36	1.68	1.69	90.1	7.1	2.8

Table S3. Results of fitting of the XPS spectrum in C 1s region of Pt UMNS and Pt seeds.

Table S4. Results of fitting of the XPS spectrum in Pt 4f region of Pt UMNS and Pt seeds.

Material	Pt 4f _{7/2} B.E. / eV		FWHM / eV			Pt 4f _{5/2} B.E. / eV			FWHM / eV			Pt ⁰	Pt ⁺	Pt ⁺²	
	Pt ⁰	Pt +	Pt ⁺²	Pt ⁰	Pt ⁺	Pt ⁺²	Pt ⁰	Pt ^{d+}	Pt ⁺²	Pt ⁰	Pt ^{d+}	Pt ⁺²	%	%	%
Pt UMNS	70.9	71.9	73.4	1.23	1.66	1.86	74.3	75.2	76.8	1.24	1.62	2.08	61	28	11
Pt seeds	71.1	72.4	-	1.13	1.97	-	74.4	75.6	-	1.12	2.08	-	68	32	0

Figure S12. Pt -seeds formed at 100 °C.

Figure S13. $PtCl_2/Na(acac)/ODA$ influence on the formation of dendritic multipods. All the results correspond to 24 h reaction at 20 °C. Pt $Cl_2/Na(acac)/ODA$: (a) 1/8/25 (reference conditions); (b) 1/4/25; and (c) 1/2/25.

Figure S14. Influence of the reaction temperature. (a) 16 h at 40 °C. (b) 4 days at 10 °C.

Figure S15. Influence of the amine nature on the Pt seeds and on the Pt UMNS. (a) hexadecylamine. (b) benzylamine. (c) hexadecylamine. (d) benzylamine.

Figure S16. TEM micrographs and particle size distribution: (a) fresh Pt/C; (b) spent Pt/C. TEM micrograph of Pt UMNS: (c) before catalysis; (d) after catalysis.

$$\begin{split} & S_{(111)}:\ 5412\ nm^2\ ,\\ & S_{lateral}:\ 2947\ nm^{*1}\ nm=2947\ nm^2\\ & S_{Total}=5412^{*2}+2947=13771\ nm^2\\ & S\ _{lateral}\ /S\ _{(111)}=2947/(5412^{*2})=0.272 \end{split}$$

Volume= 5412*1=5412 nm³ Mass: 5412* 21.45*10⁻¹⁸ mg/nm³ = 1.16*10⁻¹³ mg

SSA=13771 nm²/ $1.16*10^{-13}$ mg = $1.19*10^{17}$ nm²/mg = 119 m^2 /g

 $\label{eq:sigma} \begin{array}{l} S_{(111)}{:} \ 14675 \ nm^2 \ , \\ S_{lateral}{:} \ 7853 \ nm^{*1} \ nm= \ 7853 \ nm^2 \\ S_{Total}{=} \ 14675^{*2}{+} \ 7853{=} \ 37203 \ nm^2 \\ S_{lateral} \ / \ S_{(111)}{=} \ \ 7853/(14675^{*2}){=} \ 0.267 \ \% \end{array}$

Volume= 14675*1=14675 nm³ Mass: 14675 nm³ 21.45*10⁻¹⁸ mg/nm³ = 3.15*10⁻¹³ mg

SSA=37203 nm²/ $3.15*10^{-13}$ mg = $1.18*10^{17}$ nm²/mg = 118 m²/g

$$\begin{split} &S_{(111)}: 10321 \text{ nm}^2 \ , \\ &S_{lateral}: 5466 \text{ nm}^*1 \text{ nm}= 5466 \text{ nm}^2 \\ &S_{Total}= 10321 \ *2+5466=26108 \ \text{nm}^2 \\ &S_{lateral} \ /S_{(111)}= 5466/(10321^*2)= 0.266 \ \% \end{split}$$

Volume= 10321*1=10321 nm³ Mass: 10321 nm³ * 21.45*10⁻¹⁸ mg/nm³ = 2.21*10⁻¹³ mg

Specific surface area = 26108 nm²/ 2.21*10⁻¹³ mg = 1.18*10¹⁷ nm²/mg =118 m²/g

Figure S17. Screenshots and calculations based on evaluated surface areas and perimeter length. The surface area and the perimeter of the Pt sheet were evaluated by using the polygon tool in ImageJ. 3 discrete UMNS were measured.

The Specific Surface Area (SSA) is given by the following formula

$$SSA = \frac{S_{tot}}{m} = \frac{S_{tot}}{d_{Pt}V}$$

with d_{Pt} the density of Pt (21,45 g·cm⁻³), V the volume of a nanoparticle and S_{tot} the surface area of a nanoparticle. V and S_{tot} were calculated, according to geometrical considerations.

For the commercial catalyst it was assumed that the nanoparticles are spheres with a mean diameter of 1.1 nm.

 $S_{tot} = 4\pi r^2 = 3.80 \text{ nm}^2$ V = 4/3 $\pi r^3 = 0.697 \text{ nm}^3$ SSA = 253 m²/g

For the UMNS The S_{tot} and the V were evaluated by the following formulas:

$$S_{tot} = 2S_{(111)} + S_{lateral}$$
$$S_{lateral} = P \times L_{thickness}$$
$$V = S_{(111)} \times L_{thickness}$$

Where $S_{(111)}$ is the extended surface of the UMNS, $S_{perimeter}$ is the perimeter surface.

The S_{lateral} can be calculated by the perimeter length (P) and the lateral UMNS mean

thickness (Lthickness) (1 nm, as evaluated by EFTEM and AFM).

The SSA of the UMNS was evaluated to be 118 m²/g

Figure S18. Results of PhA hydrogenation on Pt/C catalysts modified or not with ODA. (a) Pt/C catalyst without additional ODA. (b) Pt-ODA1/C catalyst containing 20%w/w ODA related to Pt. (c) Pt-ODA2/C catalyst containing 20%w/w ODA related to Pt/C, (black circles PhA, red squares ST, and blue triangles EB).

	Pt NP size (nm)	T (°C)	P _{H2} (bar)	TOF (h ⁻¹)	S _{ST-90%} (%)	Ref.
Pt UMNS	-	25	5	850	77	This work
0.5% Pt/γ-Al ₂ O ₃	1.2	30	3,8	75	58	1
1%Pt/TiO ₂	Single atoms	30	1	294	78	2
1,65%Pt/P-SiO ₂	1	45	20	396	85	3
0,5%Pt/SiO ₂	1.5	45	20	2050	52	3
2%Pt/CNT	2.6	50	3	1350	67	4
1% Pt/TiO ₂	2.5	50	3,4	98	88	5
1,2%Pt/X-zeolite	1.05	50	5	296	84	6
Pt@PVP	2.6	50	1	656	90 ^{a)}	7
0.2%Pt@ZSM-22	1,7	65	3	2600	92	8

Table S5. Catalytic performances of Pt-based catalysts for selective hydrogenation of phenylacetylene

a) Selectivity at 30% conversion.

- 1. B. A. Wilhite, M. J. McCready and A. Varma, *Industrial & Engineering Chemistry Research*, 2002, **41**, 3345-3350.
- 2. X. Zhang, Z. Li, W. Pei, G. Li, W. Liu, P. Du, Z. Wang, Z. Qin, H. Qi, X. Liu, S. Zhou, J. Zhao, B. Yang and W. Shen, *ACS Catalysis*, 2022, **12**, 3634-3643.
- 3. S. Jayakumar, A. Modak, M. Guo, H. Li, X. Hu and Q. Yang, *Chemistry A European Journal*, 2017, **23**, 7791-7797.
- 4. L. Xia, D. Li, J. Long, F. Huang, L. Yang, Y. Guo, Z. Jia, J. Xiao and H. Liu, *Carbon*, 2019, **145**, 47-52.
- 5. J. L. Hu M, Dang Y, Suib SL, He J and Liu B, *Front. Chem.*, 2020, **8**, 581512.
- 6. Z. Zhang, G. Liu, L. Ding, M. Hu, J. Gu, W. Xu and Q. Xiao, *Inorganic Chemistry*, 2021, **60**, 19120-19127.
- 7. S. Domínguez-Domínguez, Á. Berenguer-Murcia, D. Cazorla-Amorós and Á. Linares-Solano, *Journal of Catalysis*, 2006, **243**, 74-81.
- 8. J. Tang, P. Liu, X. Liu, L. Chen, H. Wen, Y. Zhou and J. Wang, ACS Applied Materials & Interfaces, 2020, **12**, 11522-11532.