
Supporting Information for: Assembly of

Polyelectrolyte Star Block Copolymers at the

Oil-Water Interface

Jan-Michael Y. Carrillo,∗,† Zhan Chen,‡ Uvinduni I. Premadasa,¶ Christian

Steinmetz,‡ E. Bryan Coughlin,‡ Benjamin Doughty,∗,¶ Thomas P. Russell,∗,‡,§

and Bobby G. Sumpter†

†Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge,

Tennessee 37831, United States

‡Polymer Science and Engineering Department, Conte Center for Polymer Research,

University of Massachusetts, Amherst, MA 01003, United States

¶Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee

37831, United States

§Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,

United States

E-mail: carrillojy@ornl.gov; doughtybl@ornl.gov; russell@mail.pse.umass.edu

S1

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2022



Contents

1 Simulations Details S3

2 Experiment Details S7

2.1 1H-NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S7

2.2 GPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S8

References S9

S2



1 Simulations Details

We performed coarse-grained molecular dynamics simulations to probe the effect of star

diblock copolymers on the interfacial energy of the dielectric solvent/oil interface. We repre-

sented the star block copolymer as connected coarse-grained beads with neutral polystyrene

segments (PS) and positively charged quaternized poly(2-vinylpyridine) (P2VP) segments

with explicit negatively charged counterions. The model consisted mainly of three compo-

nents, which are the star diblcok copolymers, the dielectric solvent phase, and the oil phase.

In this coarse-grained representation, all short-range pair-wise interactions are described by

a shifted truncated Lennerd-Jones (LJ, Eq.S1) potential with a characteristic bead size σ,

cutoff rc, and strength of interaction εLJ .

ULJ(rij) =





4εLJ

[(
σ
rij

)12
−
(
σ
rij

)6
−
(

σ
rcut

)12
+
(

σ
rcut

)6]
rij ≤ rcut

0 rij > rcut

(S1)

All bond connectivity is described by finite extensible non-linear elastic (FENE, Eq.S2)

bonds1 with spring constant kbond = 30kBT/σ
2, maximum bond extent Ro = 1.5σ, thermal

energy kBT , and the second term is cutoff at 21/6σ.
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The degree-of-polymerization of the arm of the star block copolymer is Larm and there are

Narm arms in a star molecule. In an arm, the number of PS and P2VP beads are equal (or

the mole fraction of PS in an arm is f = 0.5).

The next component in the model is the dielectric solvent which is represented as charged

dumbbells having 2 opposite charges with a magnitude of q and separated by a distance of

∼ 0.5σ via a FENE bond with σf = 0.475σ. The pairwise interactions of dielectric solvent

beads include both short-range LJ interactions and long-range Coulomb interaction (Eq.S3)

with Bjerrum length lB = 1σ through the particle–particle particle–mesh (PPPM) method.2
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UCoul(rij) = kBT
lBqiqj
rij
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The static dielectric constant of the solvent is estimated through the variance of the system

dipole moment3,4 in an isothermal-isobaric (NPT) ensemble simulation of a simulation box

containing only solvents as,

ε = 1 +
1

3V kBTεo
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〉2)
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where ~M is the system dipole moment, ~M = Σi~µi where µi = qi~ri is the dipole of particle

i. The value of the static dielectric constant, ε, can be tuned by changing the value of q as

seen in Fig. S1. Finally, the oil phase is represented as LJ beads where the oil and solvent

is incompatible, PS is miscible to oil and P2VP is slightly less miscible to oil beads relative

to PS beads. The pair-wise non-bonded potential parameters are summarized in Tab. S1.

The simulation consisted of either 5000 or 20000 solvent molecules (10000 or 40000 solvent

beads), 5000 or 20000 oil beads, Narm = {1, 2, 3, 4} and number of stars, mstar = {3− 180}

or a bulk star density, φs = Narmmstar/Noil = 0.024− 0.36 σ−3.

Figure S1: Dependence of the static dielectric constant, ε, of a simulation box composed of
3× 104 charged dumbbells with charge q+ and q−.

The simulation consisted of several steps, which included an initial equilibration isothermal-

isobaric ensemble (NPT) step, NPT equilibration where protonation is incorporated as de-

scribed in the ad hoc reaction in Fig. 1Simulation box showing a single star or multiple stars
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Table S1: Lennard-Jones (LJ) interaction parameters and bead charge q.

Pair εLJ [kBT ] rc [σ] q [e]

solven-solvent 1.0 2.5 ±0.25
solvent-PS 0.3 2.5 –

solvent-P2VP 0.5 2.5 –
solvent-counterion 1.0 2.5 –

solvent-oil 0.3 2.5 –
solvent-QP2VP 1.0 2.5 –
solvent-IP2VP 0.5 2.5 –

PS-PS 1.0 2.5 0
PS-P2VP 0.3 2.5 –

PS-counterion 1.0 21/6 –
PS-oil 1.0 2.5 –

PS-QP2VP 0.3 2.5 –
PS-IP2VP 0.3 2.5 –

P2VP-P2VP 1.0 2.5 0
P2VP-counterion 1.0 21/6 –

P2VP-oil 0.9 2.5 –
P2VP-QP2VP 1.0 2.5 –
P2VP-IP2VP 1.0 2.5 –

counterion-counterion 1.0 21/6 −1
counterion -oil 1.0 21/6 –

counterion -QP2VP 1.0 21/6 –
counterion -IP2VP 1.0 21/6 –

oil-oil 1.0 2.5 0
oil-QP2VP 0.9 2.5 –
oil-IP2VP 0.9 2.5 –

QP2VP-QP2VP 1.0 2.5 +1
QP2VP-IP2VP 1.0 2.5 –
IP2VP-IP2VP 1.0 2.5 0
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at the dielectric solvent-oil interface (a). Cyan beads are lyophilic beads representing PS,

blue beads are quaternized P2VP or QP2VP, green beads are inert P2VP beads or IP2VP,

pink rods are dielectric solvent molecules representing the aqueous phase and oil beads are

not shown for clarity. Atomistic and coarse-grained representation of a 3-arm PS-P2VP

block copolymer star (b). Ad hoc protonation reaction where a dipolar solvent molecule is

consumed when the positively charged end of the solvent molecule comes into contact with

a P2VP bead (within a 1.3 σ cutoff). The P2VP bead is quarternized to QP2VP, which is

positively charged, and a counterion is dissociated (c).figure.caption.1(c), NPT equilibration

where the reaction is turned off, and by a canonical (NVT) production run. The temperature

is maintained by coupling the system to a Langevin thermostat,5 such that the motion of

the beads can be described as,

mi
d~vi(t)

dt
= ~Fi(t)− ξ~vi(t) + ~FR

i (t) (S5)

where mi = 1 is the bead mass, ~vi(t) is the bead velocity, and ~Fi(t) denotes the net deter-

ministic force acting on the ith bead. The stochastic force ~FR
i (t) has a zero average value

〈
~FR
i (t)

〉
= 0 and δ-functional correlations

〈
~FR
i (t) · FR

i (t′)
〉

= 6kBTξδ(t−t′). The bead fric-

tion coefficient ξ is set to ξ = 1/7.0 m/τ where τ is the reduced time unit τ = σ(m/kBT )1/2.

A Berendsen barostat6 is used to control pressure in the equilibration stage where the damp-

ing parameter was set to 5.0 τ . The deformation of the simulation box to adjust the sys-

tem pressure was coupled in the x, y directions but not in the z direction with setpoint

P = 0 kBT/σ
3 in the lateral (x and y) direction and P = 0.08 kBT/σ

3 in the normal (z)

direction.

Following the initial equilibration NPT run, the NPT run with the ad hoc reaction was

carried out until all P2VP were converted to QP2VP. The ad hoc reaction was implemented

using the package developed by Gissenger et al.7,8 We monitored the reaction kinetics of the

protonation of P2VP to QP2VP by following the depletion of [P2VP]/[P2VP]0 relative to its

original concentration and found that the reaction is first-order. (see Fig. S2) This step was
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followed by another NPT equilibration run to equilibrate the system after the protonation

reaction.
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Figure S2: Protonation reaction kinetics of a simulation box with mstar = 10, fq = 1.0 and
φs = 0.06. The black line is a fit to first-order reaction kinetics.

In the production NVT runs, the simulation box was deformed to the average dimensions

determined in the NPT runs. The NPT equilibration runs (including the protonation reaction

step) proceeded for up to 3.0 × 104 τ and the NVT production run proceeded for up to

1.0 × 104 τ . The velocity-Verlet algorithm with a time step of ∆t = 0.005 τ was used for

integrating the equations of motion in Eq.S5. All simulations were performed using the

LAMMPS molecular dynamics simulations software package.9,10

2 Experiment Details

2.1 1H-NMR
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Figure S3: Counterion density distribution, ρc(z), for the systems with Narm = 3, mstar = 10,
φs = 0.06 fq = 0.4 and in oil-solvent interface at solvents with different dielectric constant,
ε. Lines are fits to Eq.5. Note that fits for ρc(z) near z = co is best for the lowest value of ε
suggesting a gradient of ε near the diffuse counterion-star interface that is in between the ε
of oil (ε = 1) and the solvent.

Figure S4: 1H-NMR of sample 4-arm polystyrene core in deuterated chloroform.

2.2 GPC
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Figure S5: 1H-NMR of sample 4-arm star block copolymers after growing 2VP from 4-arm
PS core block precursor in deuterated chloroform.

Figure S6: GPC traces of 4-arm star block copolymers in DMF.
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