Supporting information

to

Communication of Molecular Fluorophores with Other Photoluminescence Centres in

Carbon Dots

1.	ISOLATED MOLECULES1
2.	PAH/IPCA SYSTEMS
3.	HYDROGEN-BONDED QUASI-PLANAR COMPLEXES19
4.	STACKED COMPLEXES
5.	STACKED COMPLEXES — O-FUNCTIONALIZATION
6.	SINGLE-BONDED SYSTEMS
7.	FUSED SYSTEMS
8.	CALCULATIONS WITH SYSTEMS CONTAINING BIGGER CORE (N-DOPED CORONENE MOIETY)43
9.	DIFFERENCES BETWEEN GROUND AND EXCITED STATE GEOMETRIES
10.	EXCITATION ENERGY TRANSFER ANALYSIS56

1. Isolated molecules

Table S1. Ground state singlet and triplet SCF energies of the molecules which served as a building block for interacting PAH/IPCA systems.

System	Singlet (hartree)	Triplet (hartree)	Difference (kcal/mol)
A	-615.647158204	-615.566554634	-50.6
В	-648.858384211	-648.823295350	-22.0
С	-648.934446738	-648.882968585	-32.3
D	-798.209673698	-798.157501818	-32.7
E	-837.473553228	-837.450313949	-14.6
F	-837.542643360	-837.516961634	-16.1
G	-615.647158204	-615.566554634	-50.6
Н	-644.885218730	-644.811668592	-46.2
J	-648.838982761	-648.847338725	5.2

The doping patterns in our modelled PAHs were selected based on a previous study, where the stability of various N-doped structures and the tuning of the UV spectrum with N-doping were investigated.¹ It was shown that out of four studied positions of double-doping with graphitic nitrogen, a Kekulé structure with graphitic nitrogens in a trans position separated by two carbon

atoms (NS = 2, system **B**; Figure S1a) demonstrated the lowest ground state (GS) relative energy. The graphitic-edge N-doped molecule (system **C**) corresponding to a Kekulé structure with two resonant structures each containing one Clar sextet (NS=4) exhibited one of the lowest GS relative energies among graphitic-edge N-doped molecules. It is worth noting that the graphitic doping leads to an increase of the π -electron density because each nitrogen contributes with two electrons to the delocalized π -electron system. As CDs usually possess O-containing functional groups on their surface and/or edges, some models were functionalized with either two oxo-groups (systems **D** and **E**) or one protonated carboxylic group (models **F** and **G**). In the system **E**, the graphitic-edge doping was replaced by two graphitic-core nitrogens in the same ring (referred as graphitic-N-core2 motif), as we only examined the Kekulé structures.

Importantly, the GSs of all presented structures in their geometrical minima were confirmed to be singlets, contrary to some other similar doubly doped structures being triplets in their GS (system **J** in Table S1, Figure S2) which were excluded from further analysis.

Figure S1. (a) Set of studied pyrene-like molecules (structures **A**–**G**) and molecular fluorophore IPCA (system **H**). (b) Frontier orbitals for the studied molecules calculated at the CAM-B3LYP-D3/def2TZVP/SMD level. The arrows indicate the HOMO-LUMO gaps in eV.

Figure S2. Graphitic-N-core2 model with nitrogens placed in para position in the same ring (system J).

Our calculations of optical properties are in line with a commonly observed redshift of the high-energy absorption bands due to the doping of PAHs (e.g., pyrene, model **A**) with graphitic nitrogens (see Figure S3 and Tables S2–S9). Generally, both absorption and emission maxima of structures with graphitic-N-edge doping motifs (models **C**, **G**) are less redshifted than in the corresponding systems with graphitic-N-core doping (systems **B**, **F**). On the other hand, the functionalization of the system **B** with oxo-groups (system **D**) caused blueshifts of both absorption and emission maxima. The shifts are qualitatively consistent with the calculated HOMO-LUMO gaps (Figure S1b). To predict the plausibility of the occurrence of low-lying intermolecular charge transfer (CT) transitions, the energies of frontier orbitals of IPCA were compared to those of the chosen PAHs. The HOMO of IPCA is the lowest in energy, however, five systems (**A**–**C**, **F**–**G**) demonstrate higher LUMO than IPCA. This suggests possible intermolecular CT excitations from pyrene-like molecules to IPCA. On the contrary, only the structures functionalized with oxo-groups have LUMO lower than IPCA, suggesting the possibility of CT excitations in the direction from IPCA to oxo-functionalized PAHs (systems **D**, **E**).

Experimental data measured in the gas phase showed that the first excited state of pyrene (system A) is a dark state characterized by an excitation energy of 369 nm and two dominant single excitations, HOMO–1 \rightarrow LUMO and HOMO \rightarrow LUMO+1 transitions.^{2–4} The S₁ \rightarrow S₀ emission has the peak around 372 nm in the fluorescence spectrum.¹S₀ \rightarrow S₂ excitation ($\lambda_{max} \approx 322$ nm) has a medium oscillator strength, and this state can be described as a combined HOMO \rightarrow LUMO and HOMO–1 \rightarrow LUMO+1 single excitation. Theoretically, multireference methods such as density functional theory/multireference configuration interaction (DFT/MRCI)⁵ and strongly contracted n-electron valence state perturbation theory to second order (SC-NEVPT2)^{6,7} describe these two excitations in good agreement with experiment.^{4,8} However, it still poses a challenge for TD-DFT to correctly order these two states, as was demonstrated, e. g., for TD-B3LYP.^{9–11} TD-CAM-

B3LYP/def2-TZVP calculations in gas provided the correct ordering of S_1 and S_2 states, where the first excitation energy was overestimated by 56 nm (308 nm) state and the second excitation energy overestimated by 16 nm (306 nm). In any case, these states are quasi-degenerate and, according to GMCQDPT calculations,⁴ possess considerable multiconfiguration character. Overall, we can consider TD-CAM-B3LYP calculations an adequate level of theory for calculations of absorption spectra of bigger conjugated systems.

It was reported that in polar solvents like water, the forbidden vibronic bands in the vibrational structure of an electronic transition are much enhanced under the influence of the solvent polarity,¹² which can be supported by vibronic coupling between the S₁ and S₂ electronic states leading to an intensity borrowing effect, which is manifested as an enhancement of the weak $S_0 \rightarrow S_1$ transition intensity.¹³ Thus, S₁ state being dark in gas may be visible in absorption spectra of pyrene in water. This behaviour was recorded in the experimental absorption spectrum with $\lambda_{max} \approx 360$ nm (S₀ \rightarrow S₁ excitation).¹⁴ Similarly, S₁ \rightarrow S₀ emission peak ($\lambda_{max} \approx 415$ nm) is also clearly visible in the fluorescence spectra of pyrene in water.^{13–15}

In our TD-CAM-B3LYP calculations using implicit solvation model, the first bright excited state (S₁) of pyrene is located at 313 nm (f = 0.479), which is reflected in the absorption spectra (Table S2, Figure S3a). This differs from the calculations in the gas phase,¹ where S₁ was a dark state with the excitation wavelength of 308 nm, followed by a bright S₀ \rightarrow S₂ (306 nm), dark S₀ \rightarrow S₃, and bright S₀ \rightarrow S₄ (244 nm, f = 0.40) transitions. Nevertheless, calculations of pyrene excitations with implicit solvent revealed similar trend as our calculations, i.e., bright S₁ and dark S₂ states.¹⁶ Our calculations demonstrated the Kasha emission of light at 353 nm (f = 1.12), i.e., a region blue-shifted comparing with typically reported emissions in real CDs samples (Table S2).

According to the previous TD-DFT studies, doping with graphitic nitrogens redshifts the absorption maxima, while other types of nitrogen doping exhibits smaller effects.^{17–19} TD-CAM-B3LYP calculations in gas phase¹ pointed on a big redshift of the $S_0 \rightarrow S_1$ transition (from 308 to 761 nm) when moving from pyrene to a graphitic-N-core model (system **B**), consistently with our calculations in implicit water ($\lambda_{max} = 751 \text{ nm}, f = 0.00$, Figure S3b). The character of $S_0 \rightarrow S_1$ transition differs comparing to non-doped pyrene due to contribution of graphitic nitrogens with two electrons to the π -system. Thus, on contrary to non-doped pyrene, the

delocalization of π -orbitals over the entire structure is broken in the doped pyrene (see Table S3). The first bright excited singlet is S₃. The big energy gap of around 2 eV (209 nm) between S₃ and S₄ is consistent with the calculations in gas phase, which is caused by the inability of properly describing states with higher than single excitations with TD-CAM-B3LYP calculations.¹ The vertical emission energy from the S₁ state is significantly redshifted (1350 nm, f = 0.00). This might suggest that the deexcitation of this molecule is dominated by some non-radiative energy fluxes. It is also worth noting that deactivation via ISC is not plausible here, because of a relatively large S₁-T₂ energy gap (16.2 kcal/mol, Figure S4b).

The graphitic-N-edge doping pattern (system C) still causes a redshift of the $S_0 \rightarrow S_1$ transition $(\lambda_{max} = 500 \text{ nm})$ compared to pyrene molecule, however, contrary to the graphitic-N-core doping (system **B**), this electronic transition is bright (f = 0.05). The S_1 state is slightly redshifted (by 13 nm) compared to the calculation in gas.¹ Additionally, all first four singlets S_1 -S₄ are bright now (Figure S3c, Table S4). The $S_1 \rightarrow S_0$ emission is positioned at 771 nm (f = 0.08).

Functionalization of the graphitic-N-core model with two oxo-groups (system **D**) led to significant changes in the electronic structure, as the oxo-group is a chemical group with negative mesomeric effect, i.e., an electron-withdrawing group. Therefore, these surface groups can also contribute to the absorption of light (Table S5). Transitions to three lowest excited states S_1-S_3 are bright (Figure S3d) with the $S_0 \rightarrow S_1$ absorption band peaking at 447 nm (f = 0.31). As it is typical for conjugated molecules with very delocalized electronic density, the peak around 189 nm is a mixture of many energetically higher lying π - π^* excitations. Although it could not be detected in the calculated absorption spectra, the presence of oxo-group brought n- π^* excitations to the structure, as you can see for $S_0 \rightarrow S_4$ (Table S5). The $S_1 \rightarrow S_0$ emission wavelength is in an interesting region at 490 nm (f = 0.58).

The second model with oxo-groups, i.e., two graphitic nitrogens in the para position (system **E**), also exhibited redshift of $S_0 \rightarrow S_1$ transition ($\lambda_{max} = 531 \text{ nm}, f = 0.06$) by 84 nm compared to that found for system **D** (Figure S3e). The character of this transition is slightly altered due to the position of the nitrogens on the cycle (Table S6). Interestingly, the presence of oxo-groups significantly changed the character of the $S_0 \rightarrow S_1$ transition compared to an non-functionalized molecule, where remarkably low-lying S_1 state ($\lambda_{max} = 3351 \text{ nm}$) was reported in the gas phase calculations.¹ Again, dark $n-\pi^*$ transitions were observed for this system. The

 $S_1 \rightarrow S_0$ emission of system **E** is redshifted ($\lambda_{max} = 968$ nm, f = 0.10) compared to the parent non-doped pyrene. A small singlet-triplet gap ΔE_{ST} gap of 1.0 kcal/mol between the S_1 and T_2 states suggested a plausibility of ISC (Figure S4e).

For both models with a single carboxylic group and N-doping (systems **F** and **G**), the $S_0 \rightarrow S_1$ excitations are redshifted compared to their non-functionalized counterparts. They are located at $\lambda_{max} \approx 837$ nm and $\lambda_{max} \approx 648$ nm for system **F** and **G**, respectively (Figures S3f, g), i.e., redshifted by 86 and 148 nm compared to their counterparts with no COOH groups. The redshift mainly originates in the involvement of electron densities of the –COOH group (Table S7, S8). Analogously as in the non-functionalized counterparts, S₁ is bright only for the doping pattern with graphitic-edge nitrogens (f = 0.087). Emissions are in the IR region, which is different compared to non-functionalized N-doped pyrene with graphitic-edge nitrogens (system **C**).

The first bright absorption transition of IPCA (system H) is $S_0 \rightarrow S_1$ at 342 nm (f = 0.16), the $S_1 \rightarrow S_0$ emission maximum is shifted to 435 nm (f = 0.23), and both have π - π * character (Figures S3h, Table S9). These results are consistent with our previous work using the same level of theory,²⁰ where the $S_0 \rightarrow S_1$ and $S_1 \rightarrow S_0$ transitions were predicted to be at 341 nm (f = 0.16) and 439 nm (f = 0.23), respectively. The consistency is also preserved by the dark $S_0 \rightarrow S_{2,3}$ excitations with n- π * character.

To summarize, we confirmed the commonly accepted understanding that the doping of the polyaromatic molecules with graphitic nitrogens causes redshifts of the long wavelength absorption bands. Out of three probed doping positions, the graphitic-N-edge doping appears to be the most interesting, as both absorptions and emissions are blue-shifted more than in systems with graphitic-N-core doping. On the other hand, the functionalization of the system **B** with oxo-groups (system **D**) caused blueshifts of both absorption and emission.

Figure S3. Absorption spectra of the PAHs (systems A–G in Figure S1) and IPCA (system H in Figure S1), which were used as a building block for the models of interaction systems of PAH/IPCA. For each spectrum, line spectra (excitation energy of 30 lowest singlet states with different oscillator strengths) were convoluted by a Gaussian function assuming the inhomogeneous broadening of peaks with $\sigma = 20$ nm. Insets: EDD plots for the S₀ \rightarrow S₁ transition (red/blue regions indicate increase/decrease of the electron density upon the excitation).

Figure S4. (a-h) Vertical excitation energies (VEE, in eV) of ten lowest singlet (black) and triplet (green) excited states for eight structures, which were used as a building block for the models of interaction systems of PAH/IPCA. Displayed values of ΔE_{ST} represent the vertical singlet-triplet energy gaps.

Table S2. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) displayed for five lowest excited states for **system A**.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	
S ₁ Emission			353	1.120	
S ₁ (0.92)			313	0.479	
S ₂ (0.57)			308	0.002	
S ₂ (0.41)			308	0.002	
S ₃ (0.95)			261	0.000	
S ₄ (0.58)	() ()		248	0.556	
S ₄ (0.42)			240	0.550	
S ₅ (0.92)			239	0.000	

Table S3. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) displayed for five lowest excited states for **system B**.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength
S ₁ Emission	- 1		1350	0.000
S ₁ (0.99)	555		751	0.000
S ₂ (0.98)			531	0.010
S ₃ (0.99)			481	0.285
S ₄ (0.99)			271	0.010
S ₅ (0.65)			244	0.220
S ₅ (0.33)			266	0.229

Table S4. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) displayed for five lowest excited states for **system C**.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength			
S ₁ Emission			771	0.080			
S ₁ (0.99)			500	0.049			
S ₂ (0.97)			433	0.079			
S ₃ (0.98)			359	0.270			
S ₄ (0.84)		\$	258	0.251			
S ₄ (0.10)			238	0.231			
S ₅ (0.95)			247	0.000			

Table S5. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) displayed for five lowest excited states for **system D**.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength		
S ₁ Emission	÷		490	0.583		
S ₁ (0.99)			447	0.305		
S ₂ (0.97)	÷		382	0.220		
S ₃ (0.94)	*		296	0.081		
S ₄ (0.99)			284	0.000		
S ₅ (0.58)			279	0.055		
S ₅ (0.41)			219	0.035		

Table S6. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) displayed for five lowest excited states for **system E**.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	
S ₁ Emission			968	0.100	
S ₁ (1.00)	- 15		531	0.064	
S ₂ (0.96)	- 2		376	0.240	
S ₃ (0.86)	- *		- 306	0.065	
S ₃ (0.13)				0.065	
S ₄ (0.99)			294	0.000	
S ₅ (0.83)	1		286	0.115	
S ₅ (0.16)		***	- 286	0.115	

Table S7. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au),vertical excitation energies (VEEs, or vertical emission energy for the first row in the table)displayed for five lowest excited states for **system F**.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength			
S ₁ Emission	-		1587	0.016			
S ₁ (0.99)			837	0.018			
S_2 (0.98)	-		490	0.007			
S ₃ (0.99)	-	> +\$\$	462	0.176			
S ₄ (0.96)			342	0.526			
S ₅ (0.91)			262	0.758			

Table S8. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) displayed for five lowest excited states for **system G**.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength		
S ₁ Emission			1434	0.142		
S ₁ (0.99)			648	0.087		
S ₂ (0.97)		×	428	0.060		
S ₃ (0.98)		<mark></mark>	355	0.254		
S ₄ (0.94)			312	0.185		
S ₅ (0.91)	**** *		253	0.108		

Table S9. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) displayed for five lowest excited states for **system H**.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength			
S ₁ Emission		j iget	435	0.231			
S ₁ (0.99)			342	0.157			
S ₂ (0.93)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		240	0.000			
S ₃ (0.91)			231	0.000			
S ₄ (0.87)			223	0.001			
S ₄ (0.12)		₹ <mark>₹</mark> ₹₹		0.001			
S ₅ (0.83)			214	0.285			
S ₅ (0.16)			214	0.285			

2. PAH/IPCA systems

Figure S5. Scheme displaying charge and energy transfer processes occurring in the studied models upon excitation. LE represents local excitation, CT (e^{-/h^+}) charge (electron/hole) transfer, ET energy transfer, ISC intersystem crossing.

Table S10. Ground	state singlet an	nd triplet SCF	energies of the	interacting PAH/IPCA model
systems.				

System	Singlet (hartree)	Triplet (hartree)	Difference (kcal/mol)
COOH_core	-1482.37852879	-1482.35736110	-13.3
COOH_edge	-1482.44742522	-1482.42395688	-14.7
Stacked_core	-1293.76499051	-1293.73577477	-18.3
Stacked_edge	-1293.84010272	-1293.80751019	-20.5
Oxo_stacked1_a	-1443.11634108	-1443.06467584	-32.4
Oxo_stacked1_b	-1443.11773764	-1443.06508889	-33.0
Oxo stacked 2 a	-1443.08963697	-1443.05240349	-23.4
Oxo_stacked_2_b	-1443.09856045	-1443.05332302	-28.4
Ester1_core	-1292.53198325	-1292.49690511	-22.0
Ester1 edge	-1292.60999006	-1292.57964801	-19.0
Amide1_core	-1272.66707977	-1272.63154650	-22.3
Amide1_edge	-1272.74473104	-1272.69119770	-33.6
Amide2_core	-1272.67001131	-1272.63496488	-22.0
Amide2_edge	-1272.74379786	-1272.69220812	-32.4
Amide3_core	-1272.67020628	-1272.65015632	-12.6
Amide3_edge	-1272.74787566	-1272.72132957	-16.7
Fused	-1180.71730194	-1180.64432638	-45.8
Fused_core	-1213.92799900	-1213.89947425	-17.9
Fused_edge	-1213.97814168	-1213.95245646	-16.1

Figure S6. (a-h) Vertical excitation energies (VEE, in eV) to ten lowest singlets (black) and triplets (green) for our models of interaction systems of PAH/IPCA. Displayed values of ΔE_{ST} represent singlet-triplet energy gaps potentially interesting for ISC.

3. Hydrogen-bonded quasi-planar complexes

Table S11. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for the **COOH_core** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)					
S ₁ Emission	\$ ***\$\$\$	A CAR	1640	0.023						
S ₁ (0.99)	A. C.	A	846	0.027	1.13					
S ₂ (0.98)	A CHANGE	A CHAR	487	0.009	0.68					
S ₃ (0.99)	A. C. SAME	A CHER	461	0.172	1.13					
S ₄ (1.00)	the second secon		401	0.026	9.91					
S ₅ (0.97)	AT STAR	A CONTRACT	347	0.599	3.02					
S ₆ (0.99)	Sec.	A a a a a a a a a a a a a a a a a a a a	342	0.161	1.82					

Table S12. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for **COOH_edge** model.

		×	Ť			
	NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)
	S ₁ Emission			1547	0.160	
	S ₁ (0.99)	A CHARLES		660	0.103	2.37
	S ₂ (0.97)	*****		428	0.057	0.23
	S ₃ (1.00)	ないない		371	0.002	10.05
	S ₄ (0.98)	X	A BROAK	355	0.273	0.35
	S ₅ (0.99)	×\$\$ →\$\$	×¥ * ⇒×₹×	345	0.148	1.87
	S ₆ (0.94)	XX-X	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	314	0.193	1.38
	-HOMO-	LUMO	2.00	-HOMO-	LUMO	
00 -	_	_	0.00	_	_	
00 -			-2.00 -			
00 -	_		(^ e) .4.00 - Afineration -4.00 -	_		
			ш			

-10.00 F H COOH_core -10.00 G H COOH_edge Figure S7. HOMO and LUMO orbitals of the studied systems calculated with CAM-B3LYP-

-6.00

-8.00

D3/def2-TZVP/SMD calculations.

Energy (eV)

-6.00

-8.00

4. Stacked complexes

Table S13. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for **stacked_core** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)					
S ₁ Emission			1512	0.001						
S ₁ (0.99)			782	0.000	1.33					
S ₂ (1.00)			688	0.002	3.01					
S ₃ (0.98)			526	0.007	0.05					
S ₄ (0.99)			483	0.220	0.19					
S ₅ (0.98)			345	0.097	1.83					
S ₆ (1.00)			317	0.004	3.39					

Table S14. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for **stacked_edge** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)					
S ₁ Emission										
S ₁ (1.00)			558	0.021	3.48					
S ₂ (0.99)			497	0.041	0.97					
S ₃ (0.97)			427	0.059	0.09					
S ₄ (0.88)			362	0.105	0.57					
S ₄ (0.11)										
S ₅ (0.88)			343	0.210	1.62					
S ₅ (0.10)			575	0.210						
S ₆ (0.99)			283	0.005	3.35					

Figure S8. HOMO and LUMO orbitals of the studied systems calculated with CAM-B3LYP-D3/def2-TZVP/SMD calculations.

Note regarding Figure 4d:

For the **stacked_edge** model, the calculated vertical emission energy for the $S_1 \rightarrow S_0$ transition was 0.54 eV and -0.28 eV using the LR and cLR approaches, respectively. The wave-function stability test was performed, and it was found out that the wavefunction had an RHF \rightarrow UHF instability in the GS energy calculation at the excited state geometry indicating the vicinity of S_0 and S_1 energy levels, which was also confirmed by spin-flip TD-DFT (SF-TD-DFT)²³ calculations at the BHHLYP/def2-TZVP/SMD level of theory with GAMESS,²⁴ version 2022 (R1) (see Table S15). As the solvent polarization effects are significant in the **stacked_edge** model, the negative cLR emission energy is an artifact of cLR-TD-DFT calculation in this case.

Table S15. TD-DFT and SF-TD-DFT vertical excitation energies (eV) and the S^2 values of the S₁ state (in parentheses) of **stacked_edge** model obtained using the BHHLYP and CAM-B3LYP methods in combination with the def2-TZVP basis set and the SMD solvation model (solvent=water).

Geometry	gas phase		wa	water		water	
	TD-	SF-TD-	TD-	SF-TD-	TD-CAM-	SF-TD-	
	BHHLYP	BHHLYP	BHHLYP	BHHLYP	B3LYP	CAM-	
		(S^2)		(S^2)		B3LYP	
						(S^2)	
GS	2.65	2.68 (0.29)	2.28	1.39 (0.68)	2.29	1.53 (0.82)	
\mathbf{S}_1	1.22	1.49 (0.39)	0.97	0.19 (0.81)	1.02	0.37 (0.87)	

5. Stacked complexes — O-functionalization

Two conformations differing in mutual orientation of molecular units were studied for O-functionalized stacked dimers. It was observed that the angle between the main molecular axes of IPCA and PAH only slightly affected the absorption spectra (Figure 2c-g). The O-functionalization of the PAH units with oxo-groups significantly changed the character of the CT transitions, which were primarily from PAH to IPCA in **stacked_core** and **stacked_edge** models. Moreover, the presence of oxo-groups on the edges enriched the ensemble of electronic excitations by $n \rightarrow \pi^*$ transitions.

Table S16. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for **oxo_stacked1_a** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)					
S ₁ Emission			501	0.558						
S ₁ (0.98)			453	0.250	0.73					
S ₂ (0.97)			385	0.166	2.46					
S ₃ (0.98)			358	0.049	3.07					
S ₄ (0.89)			333	0.042	2.10					

S ₄ (0.10)				
S ₅ (0.94)		327	0.041	2.93
S ₆ (0.93)		298	0.066	1.39
S ₇ (0.99)		285	0.000	2.58
S ₈ (0.55)		281	0.035	0.49
S ₈ (0.44)		201	0.055	

Table S17. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for **oxo_stacked1_b** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D_{CT} (Å)					
S ₁ Emission			525	0.464						
S ₁ (0.98)			447	0.248	0.78					
S ₂ (0.95)			383	0.130	2.45					

Figure S9. HOMO and LUMO orbitals of the studied systems calculated with CAM-B3LYP-D3/def2-TZVP/SMD calculations.

Table S18. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for **oxo_stacked2_a** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)					
S ₁ Emission*			976	0.093						
S ₁ (0.99)		A A A A A A A A A A A A A A A A A A A	520	0.061	2.74					
S ₂ (0.95)		A CARACTER OF CONTRACT	373	0.226	1.22					
S ₃ (0.98)	A A A A A A A A A A A A A A A A A A A		346	0.120	1.82					
S ₄ (0.51)	di na sere a la constante de l	A A A	310	0.024	1.77					
S ₄ (0.48)		and the second s	510	0.024						
S ₅ (0.68)			308	0.003	2.10					
S ₅ (0.32)		A A A A A A A A A A A A A A A A A A A	308	0.005						
S ₆ (0.73)			303	0.052	3.48					

S ₆ (0.25)	te and the second se	A. A			
S ₇ (0.98)	S S S S S S S S S S S S S S S S S S S	Sector	289	0.001	3.09
S ₈ (0.84)			284	0.120	2.90
S ₈ (0.14)	****	and the second s	284	0.120	

*Interestingly, the **oxo_stacked2_a** structure closed itself during the geometry optimization of the S₁ state preserving the character of NTO orbitals in the GS geometry (Table S17, Figure S17).

Table S19. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for **oxo_stacked2_b** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D_{CT} (Å)					
S ₁ Emission			952	0.091						
S ₁ (1.00)			529	0.050	2.73					
S ₂ (0.92)			378	0.161	1.36					
S ₃ (0.92)			352	0.075	2.73					
S ₄ (0.93)			348	0.020	3.82					

Figure S10. HOMO and LUMO orbitals of the studied systems calculated with CAM-B3LYP-D3/def2-TZVP/SMD calculations.

To sum up the findings for stacking complexes, the MO overlap of the small centres of PL brought new excitations with CT character. The facts that the nature of the structure of CDs makes such arrangements highly probable and that these CT can be sensitive to changes of the environment of CD, these states should be considered in the interpretation of the CDs PL.

The O-functionalization of the studied stacked complexes not only significantly enhanced the intensity of $S_1 \rightarrow S_0$ emission, but also made the options for more complex structural features due to possible formation of H-bonds. This could affect the overlap of the molecular units in a complex, which is essential for the enhancement of mutual communication of PL centres in CDs.

6. Single-bonded systems

To investigate the communication between core and molecular states in models separated by a single covalent bond, systems **B** and **C** were used as exemplars of the interacting PAH/IPCA units linked via ester or amide bonds. For the amide bond, three different binding PAH–IPCA positions were considered to address the geometrical and steric effects on the optical properties.

Figure S11. Side view of the single-bonded (a) amide1_core, (b) amide1_edge, (c) ester1_core, (d) ester1_edge, (e) amide2_core, (f) amide2_edge, (g) amide3_core, (h) amide3_edge complexes, displaying different mutual orientation of PAH with respect to IPCA.

Table S20. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for ester1_core model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)					
S ₁ Emission	** *		1370	0.001						
S ₁ (0.99)			748	0.001	0.31					
S ₂ (1.00)			556	0.004	5.44					
S ₃ (0.98)			518	0.010	0.73					
S ₄ (0.99)			471	0.277	0.39					
S ₅ (0.99)			345	0.150	1.87					

Table S21. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for ester1_edge model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)		
S ₁ Emission			751	0.080			
S ₁ (0.99)		₩ A	493	0.045	0.70		
S ₂ (1.00)			472	0.007	5.61		
S ₃ (0.97)		THE AND A	428	0.108	0.02		
S ₄ (0.98)		***	354	0.271	0.65		
S ₅ (0.99)			345	0.149	1.85		

Figure S12. HOMO and LUMO orbitals of the studied systems calculated with CAM-B3LYP-D3/def2-TZVP/SMD calculations.

Table S22. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for **amide1_core** model.

A A A A A A A A A A A A A A A A A A A						
NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)	
S ₁ Emission			1372	0.001		
S ₁ (0.99)	At a	THE REAL PROPERTY IN THE REAL PROPERTY INTERNAL PRO	738	0.000	0.21	
S ₂ (0.94)			528	0.012	0.02	
S ₃ (0.99)			472	0.273	0.12	
S ₄ (1.00)	U		446	0.001	6.01	
S ₅ (0.98)	÷		315	0.173	1.42	

Table S23. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for **amide1_edge** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D_{CT} (Å)		
S ₁ Emission			757	0.081			
S ₁ (0.99)			482	0.058	0.95		
S ₂ (0.98)			444	0.177	2.28		
S ₃ (0.98)	्रहेस्ट्रेन		385	0.020	4.89		
S ₄ (0.98)		State:	350	0.231	1.98		
S ₅ (0.98)			316	0.174	1.57		

Table S24. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for **amide2_core** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)		
S ₁ Emission			1464	0.009			

S ₁ (0.99)		749	0.003	0.15
S ₂ (0.98)		528	0.013	0.08
S ₃ (0.99)		497	0.363	2.21
S ₄ (0.99)		425	0.065	6.02
S ₅ (0.98)		313	0.180	1.51

Table S25. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for **amide2_edge** model.

A CONTRACTOR						
NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)	
S ₁ Emission			782	0.051		
S ₁ (0.99)			505	0.035	0.98	
S ₂ (0.97)			430	0.058	0.35	
S ₃ (0.99)		A A A A A A A A A A A A A A A A A A A	391	0.172	5.95	
S ₄ (0.98)			351	0.222	1.31	

Table S26. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) displayed for electronic over 280 nm for **amide3_core** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)					
S ₁ Emission			1310	0.004						
S ₁ (0.99)			754	0.007	0.89					
S ₂ (0.98)			529	0.015	0.06					
S ₃ (0.99)			485	0.260	0.18					
S ₄ (1.00)			430	0.279	6.57					
S ₅ (0.98)			319	0.163	1.82					

Table S27. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for **amide3_edge** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D_{CT} (Å)				
S ₁ Emission		State Barrie	1400	0.181					

Figure S13. HOMO and LUMO orbitals of the studied systems calculated with CAM-B3LYP-D3/def2-TZVP/SMD calculations.

7. Fused systems

Table S28. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for **fused** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)						
S ₁ Emission			441	0.834							
S ₁ (0.97)			379	0.557	1.50						
S ₂ (0.68)			315	0.014	2.11						
S ₂ (0.24)		-	515	0.014							
S ₃ (0.58)			204	0.073	0.50						
S ₃ (0.38)			304	0.075							
S ₄ (0.60)	- the fl	-	281	0.439	1.05						
S ₄ (0.38)			201	0.439							

Table S29. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for **fused_core** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)						
S ₁ Emission	- A CAR		1071	0.005							
S ₁ (0.99)		State of the second	651	0.003	1.46						
S ₂ (0.99)			512	0.217	0.98						
S ₃ (0.99)		-	503	0.079	4.16						
S ₄ (0.84)			363	0.392							
S ₄ (0.14)			505	0.392	2.14						
S ₅ (0.86)		-	354	0.026							
S ₅ (0.12)			554	0.020	3.53						
S ₆ (0.95)			283	0.242	4.57						

Table S30. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs, or vertical emission energy for the first row in the table) and the calculated CT distance^{21,22} displayed for electronic over 280 nm for the **fused_edge** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)					
S ₁ Emission			945	0.023						
S ₁ (0.99)			592	0.122	1.13					
S ₂ (0.98)			558	0.453	4.55					
S ₃ (0.99)			512	0.198	1.73					
S ₄ (0.82)			250	0.016						
S ₄ (0.15)		483	350	0.016	2.30					
S ₅ (0.83)			220	0.112	2.70					
S ₅ (0.15)			338	0.113						
S ₆ (0.74)			202	0.022	0.93					
S ₆ (0.24)			303	0.032						

Figure S14. HOMO and LUMO orbitals of the studied systems calculated with CAM-B3LYP-D3/def2-TZVP/SMD calculations.

8. Calculations with systems containing bigger core (N-doped coronene moiety)

Figure S15. Studied interaction motifs of PAH/IPCA, where the CD core is represented by an N-doped coronene-sized PAH.

Figure S16. Absorption spectra of coronene/IPCA and pyrene/IPCA complexes along with those of the separated molecules which form the complexes. For each spectrum, the line spectra (excitation energy of 30 lowest singlet states with different oscillator strengths) were convoluted by a Gaussian function assuming the inhomogeneous broadening of peaks with $\sigma = 20$ nm, and the absorption range from 280 to 680 nm is shown.

Table S31. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs) and the calculated CT distance displayed for ten lowest excited states for the **amide1_cor** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)						
S ₁ (0.99)	्र		909	0.006	0.99						
S ₂ (0.99)		· A A A A A A A A A A A A A A A A A A A	695	0.020	2.17						
S ₃ (0.98)	A HAH		560	0.009	0.89						
S ₄ (0.99)			460	0.068	5.40						
S ₅ (0.98)		大学	449	0.172	0.36						
S ₆ (0.98)		本がなな	316	0.208	1.49						
S ₇ (0.90)		なななな	310	0.413	0.15						
S ₈ (0.51)		ななな	201	0.056	1.44						
S8 (0.42)	्		301	0.036	1.44						
S ₉ (0.97)	A HAR	A A A A A A A A A A A A A A A A A A A	282	0.005	0.69						
$\begin{array}{c} S_{10} \\ (0.68) \end{array}$											
S ₁₀ (0.20)			277	0.340	1.09						
S ₁₀ (0.10)											

Table S32. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs) and the calculated CT distance displayed for ten lowest excited states for the **amide1_cor_edge** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)					
S ₁ (0.99)			897	0.077	1.72					
S ₂ (0.98)			559	0.122	1.04					
S ₃ (0.98)			517	0.063	0.26					
S ₄ (0.99)			457	0.080	5.50					
S ₅ (0.98)			401	0.111	0.19					
S ₆ (0.94)			344	0.443	1.96					
S ₇ (0.98)			315	0.164	1.58					
S ₈ (0.95)			292	0.258	1.24					
S ₉ (0.95)			288	0.331	1.22					
S ₁₀ (0.72)		金書を								
S ₁₀ (0.14)			273	0.224	4.07					
S ₁₀ (0.11)										

Table S33. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs) and the calculated CT distance displayed for ten lowest excited states for the **stacked_cor** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)				
S ₁ (0.99)			938	0.006	1.12				
S ₂ (0.99)			732	0.011	2.73				
S ₃ (0.99)			669	0.010	3.07				
S ₄ (0.98)			562	0.011	1.13				
S ₅ (0.99)			460	0.170	1.54				
S ₆ (0.97)			347	0.052	1.85				
S ₇ (0.98)			320	0.030	3.27				

S ₈ (0.88)	North Contraction	309	0.261	0.80
S ₉ (0.48)		204	0.076	1 55
S ₉ (0.45)		304	0.076	1.55
S ₁₀ (0.98)		287	0.004	1.12

Table S34. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs) and the calculated CT distance displayed for ten lowest excited states for the **stacked_oxo_cor** model.

NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)				
S ₁ (0.97)			491	0.169	3.74				
S_2 (0.61)			394	0.015	3.09				
S2 (0.38)			394	0.015	3.09				
S ₃ (0.94)	A A A A A A A A A A A A A A A A A A A	With the second	386	0.076	3.04				

		r			
S ₄ (0.97)			365	0.022	3.50
S ₅ (0.59)			352	0.241	2.88
S ₅ (0.31)	Wards and		552	0.241	2.88
S ₆ (0.68)					
S ₆ (0.21)	Water and	No contraction of the contractio	351	0.191	2.28
S ₆ (0.10)					
S ₇ (0.98)			341	0.044	3.72
S ₈ (0.78)	Water and	A A A A A A A A A A A A A A A A A A A	316	0.085	3.31
S ₈ (0.15)		Ward and a second	316	0.085	5.51
S ₉ (0.71)			201	0.079	2.42
S ₉ (0.18)	Warter and	With the second	301	0.068	2.42

S ₁₀ (0.60)				
S ₁₀ (0.26)		297	0.118	1.75
S ₁₀ (0.12)	A second			

Table S35. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs) and the calculated CT distance displayed for ten lowest excited states for the **stacked_oxo2_cor** model.

		}}}&&			
NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D_{CT} (Å)
S ₁ (0.98)			565	0.055	2.98
S ₂ (0.96)			465	0.210	3.02
S ₃ (0.80)			379	0.087	3.00
S ₃ (0.16)			513	0.087	5.00

S ₄ (0.98)			371	0.016	3.52
S ₅ (0.72)			362	0.084	2.85
S ₅ (0.26)			502	0.084	
S ₆ (0.84)			255	0.105	3.18
S ₆ (0.12)			355	0.105	5.18
S ₇ (0.90)			344	0.035	2.76
S ₈ (0.82)	Xarati	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	337	0.073	2.85
S ₉ (0.85)			325	0 163	3.09
S ₉ (0.13)			525	0.163	5.09

Table S36. NTO orbitals (only those with weight > 0.10 are shown; the isocontour value is 0.04 au), vertical excitation energies (VEEs) and the calculated CT distance displayed for ten lowest excited states for the **stacked_oxo_cor2** model.

	ిత <mark>ి తికి తి</mark> ం ంతి తికి తికి తి									
NTO (weight)	Hole	Electron	VEE (nm)	Oscillator strength	D _{CT} (Å)					
S ₁ (0.98)			518	0.051	3.35					
S ₂ (0.93)			381	0.205	2.64					
S ₃ (0.70)			368	0.064	2.82					
S ₃ (0.27)			500	0.001	2.02					
S ₄ (0.72)			361	0.109	3.39					
S ₄ (0.24)			501	0.107	5.57					

S ₅ (0.56)			352	0.078	2.32
S ₅ (0.38)					
S ₆ (0.79)			342	0.216	1.07
S ₆ (0.13)			0.12	0.210	
S ₇ (0.76)	in the second se		334	0.027	3.41
S ₇ (0.23)		XARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	T	0.027	3.41
S ₈ (0.87)			320	0.003	2.64
S ₈ (0.12)					
S ₉ (0.86)		ALL	298	0.055	2.78
S ₉ (0.10)			270	0.055	2.70

S ₁₀ (0.84)		294	0.036	3.06
S ₁₀ (0.13)		294	0.030	5.00

9. Differences Between Ground and Excited State Geometries

Figure S17. The difference between S_0 (blue) and S_1 (red) relaxed geometries of the studied nonbonded complexes structures (RMS is shown in brackets in Å).

Figure S18. The difference between S_0 (blue) and S_1 (red) relaxed geometries of the studied bonded complexes (RMS is shown in brackets in Å).

Figure S19. The difference between S_0 (blue) and S_1 (red) relaxed geometries of the studied fused complexes (RMS is shown in brackets in Å).

10. Excitation energy transfer analysis

Table S37. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **COOH_core**. The values in the matrix are total coupling (in eV). The value in the violet frame corresponds the ET displayed in the de-excitation cascade scheme (Figure 4a). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow	341	242	232	223	213
↓	↓F/H→	S ₁	S ₂	S ₃	S ₄	S ₅
832	S ₁	0.00034	-0.00091	0.00019	-0.00093	-0.00678
489	S ₂	0.00013	-0.00035	0.00007	-0.00030	-0.00279
461	S ₃	0.00091	0.00069	-0.00009	0.00024	0.00606
342	S ₄	0.00191	-0.00216	0.00041	-0.00178	-0.01769
262	S ₅	-0.00073	-0.00175	0.00028	-0.00121	-0.01409

 $S_6 \rightarrow S_5$ in dimer

Table S38. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **COOH_edge**. The values in the matrix are total coupling (in eV). The value in the violet frame corresponds the ET displayed in the de-excitation cascade scheme (Figure 4b). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow		342	242	233	223	213
\downarrow	↓G/H–	→	S ₁	S ₂	S ₃	S ₄	S ₅
649	S ₁		-0.00018	-0.00085	-0.00121	0.00128	-0.01033
428	S ₂		-0.00152	0.00005	0.00007	-0.00007	0.00074
356	S₃		-0.00017	0.00056	0.00069	-0.00042	0.00763
312	S ₄	Γ	0.00187	0.00065	0.00099	-0.00123	0.00722
253	S ₅		0.00160	0.00032	0.00053	-0.00075	0.00308

 $S_5 \rightarrow S_4$ in dimer

Table S39. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **stacked_core**. The values in the matrix are total coupling (in eV). The value in the violet frame corresponds the ET displayed in the de-excitation cascade scheme (Figure 4c). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow	340	240	231	223	214		
\downarrow	↓B/H→	S ₁	S ₂	S ₃	S ₄	S ₅		
752	S ₁	-0.00152	-0.00037	0.00098	-0.00655	-0.00558		
531	S ₂	-0.00988	-0.00002	0.00297	-0.00047	0.01527		
480	S ₃	-0.05925	-0.00302	0.00707	0.00497	0.03912		
272	S4 /	-0.00784	0.00183	0.00114	-0.00700	-0.00341		
265	S ₅	0.02038	-0.00498	0.00164	0.00601	0.04605		
$S_5 \rightarrow S$	$S_5 \rightarrow S_4$ in dimer							

Table S40. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **stacked_edge**. The values in the matrix are total coupling (in eV). The value in the violet frame corresponds the ET displayed in the de-excitation cascade scheme (Figure 4d). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow	342	240	232	224	214
$ $ \downarrow	↓C/H→	S ₁	S ₂	S ₃	S ₄	S ₅
499	S ₁	-0.02544	-0.00082	-0.00157	0.00302	-0.01003
431	S ₂	-0.00843	0.00111	0.00278	-0.00056	0.03581
359	S ₃	0.05661	0.00076	0.00483	-0.00608	0.02544
258	S4 /	-0.01616	0.00409	0.00130	-0.00730	0.04713
248	S ₅	0.00746	-0.00069	0.00040	0.00048	0.00069
$S_5 \rightarrow S$	4 in dime	•		$S_4 \rightarrow S_4$	S_3 in dime	•

Table S41. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **oxo_stacked1_a**. The values in the matrix are total coupling (in eV). The value in the violet frame corresponds the ET displayed in the de-excitation cascade scheme (Figure 4e). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow	343	240	231	224	213
$ $ \downarrow $ $	↓D/H→	S ₁	S ₂	S ₃	S ₄	S ₅
446	S ₁	0.02356	0.00121	0.00234	-0.00944	0.05072
382	S ₂	0.02960	-0.00140	-0.00393	0.00097	-0.03824
296	S ₃	-0.02702	-0.00264	0.00010	-0.00178	-0.00640
285	S ₄	0.00109	-0.00007	-0.00025	0.00094	-0.00321
279	S ₅	-0.01611	0.00362	0.00236	-0.00138	0.02516

 $S_5 \rightarrow S_4$ in dimer

Table S42. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **oxo_stacked1_b**. The values in the matrix are total coupling (in eV). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow	342	240	231	224	214
\downarrow	↓D/H→	S ₁	S ₂	S ₃	S ₄	S ₅
446	S ₁	-0.01881	-0.00114	-0.00042	0.00465	-0.06291
382	S ₂	0.04745	-0.00070	-0.00259	0.00043	-0.00247
296	S ₃	-0.01064	0.00011	0.00083	-0.00916	0.03053
284	S_4	0.00022	0.00008	-0.00031	-0.00211	-0.00080
279	S_5	-0.02530	-0.00040	-0.00048	-0.00463	0.00558

Table S43. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **oxo_stacked_2_a**. The values in the matrix are total coupling (in eV). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow	339	240	232	222	214
\downarrow	↓D/H→	1	2	3	4	5
535	1	0.02302	-0.00006	0.00049	0.00425	0.00299
378	2	0.00646	-0.00097	-0.00001	0.01642	0.01995
307	3	0.00698	0.00054	-0.00227	-0.00508	0.00340
296	4	0.00009	0.00005	-0.00012	-0.00028	0.00035
287	5	0.00783	0.00022	-0.00101	-0.00001	0.00389

Table S44. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **oxo_stacked_2_b**. The values in the matrix are total coupling (in eV). The value in the violet frame corresponds the ET displayed in the de-excitation cascade scheme (Figure 4h). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow	342	239	231	224	214
$ $ \downarrow	JE/H→	S ₁	S ₂	S ₃	S ₄	S ₅
533	S ₁	0.02475	-0.00024	-0.00100	0.00535	-0.03178
376	S ₂	0.02841	-0.00012	0.00065	-0.00391	0.04839
307	S₃ /	-0.00021	-0.00051	-0.00115	-0.01005	0.02327
295	S ₄	0.00008	-0.00009	0.00004	0.00029	-0.00122
286	S ₅	-0.02350	-0.00029	0.00342	0.00677	-0.00399

 $S_3 \rightarrow S_2$ in dimer

Table S45. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **ester1_core**. The values in the matrix are total coupling (in eV). The value in the violet frame corresponds the ET displayed in the de-excitation cascade scheme (Figure 5a). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow		347	245	227	222	214
↓	↓B/H—	>	S ₁	S ₂	S ₃	S ₄	S ₅
746	S ₁		-0.00037	-0.00012	-0.00032	-0.00010	-0.00077
528	S ₂		-0.00044	-0.00028	-0.00281	-0.00002	0.00739
478	S ₃		0.00231	0.00115	0.00226	0.00006	0.00139
271	S ₄	1	-0.00129	-0.00063	-0.00114	0.00042	0.00090
265	S_5		-0.00335	0.00003	0.00326	-0.00039	-0.01863
$S_5 \rightarrow S_4$ in dimer							

Table S46. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **ester1_edge**. The values in the matrix are total coupling (in eV). The value in the violet frame corresponds the ET displayed in the de-excitation cascade scheme (Figure 5b). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow		316	240	218	217	209		
↓	↓C/H—	>	S ₁	S ₂	S ₃	S ₄	S ₅		
488	S ₁		-0.00131	-0.00022	-0.00003	-0.00021	-0.00413		
427	S ₂		-0.00150	-0.00111	0.00337	0.00187	-0.01820		
358	S ₃		0.00279	0.00095	0.00128	0.00023	0.00480		
256	S_4	1	0.00301	0.00082	-0.00155	-0.00070	0.01621		
249	S ₅		0.00086	-0.00044	0.00060	0.00074	-0.00017		

 $S_5 \rightarrow S_4$ in dimer

Table S47. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **amide1_core**. The values in the matrix are total coupling (in eV). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow	316	239	217	217	209
$ \downarrow $	↓B/H→	S ₁	S ₂	S ₃	S ₄	S ₅
742	S ₁	0.00048	0.00015	-0.00009	-0.00070	-0.00047
530	S ₂	0.00269	-0.00008	0.00160	0.00297	0.00859
478	S ₃	-0.00818	-0.00304	0.00084	0.00398	0.00011
270	S ₄	0.00091	0.00003	0.00026	-0.00002	-0.00031
265	S_5	-0.00439	0.00322	-0.00369	-0.01178	-0.01799

Table S48. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **amide1_edge**. The values in the matrix are total coupling (in eV). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow	316	240	218	217	209
\downarrow	↓C/H→	S ₁	S ₂	S ₃	S ₄	S ₅
488	S ₁	0.00424	0.00328	0.00163	-0.00415	-0.00444
427	S ₂	-0.00718	0.00320	0.00531	-0.01042	-0.01613
358	S ₃	-0.00523	-0.00776	-0.00347	0.00779	0.00743
256	S ₄	0.00377	-0.00639	-0.00503	0.01085	0.01390
249	S_5	-0.00012	-0.00213	-0.00173	-0.00080	-0.00049

Table S49. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **amide2_core**. The values in the matrix are total coupling (in eV). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow	315	239	217	217	209
↓	↓B/H→	S ₁	S ₂	S ₃	S ₄	S ₅
750	S ₁	-0.00013	-0.00160	0.00126	-0.00209	-0.00298
532	S ₂	-0.00506	0.00131	-0.00114	0.00091	0.00249
481	S ₃	0.00629	-0.00806	0.00288	-0.01540	-0.02061
271	S_4	0.00050	0.00138	-0.00065	0.00048	0.00015
265	S_5	-0.00839	0.00088	-0.00166	-0.00871	-0.01262

Table S50. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **amide2_edge**. The values in the matrix are total coupling (in eV). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow	314	238	217	217	209
\downarrow	↓C/H→	S ₁	S ₂	S ₃	S ₄	S ₅
500	S ₁	0.00236	-0.00425	-0.00204	0.00429	-0.00441
433	S ₂	0.00950	-0.00046	0.00424	-0.00183	0.00300
360	S ₃	-0.00312	0.00724	0.00844	-0.01360	0.01950
258	S_4	0.01247	-0.00204	0.00742	-0.00593	0.01249
247	S_5	-0.00071	0.00143	-0.00051	-0.00045	-0.00034

Table S51. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **amide3_core**. The values in the matrix are total coupling (in eV). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow	317	241	218	217	210
\downarrow	↓B/H→	S ₁	S ₂	S ₃	S ₄	S ₅
760	S ₁	-0.00051	0.00122	-0.00030	0.00009	-0.00023
534	S ₂	-0.00002	-0.00013	0.00065	0.00159	-0.00252
483	S ₃	0.00410	-0.00615	0.00655	0.01400	-0.02220
272	S_4	0.00093	-0.00011	0.00007	-0.00006	0.00014
267	S_5	-0.00513	-0.00250	0.00026	-0.00107	0.00202

Table S52. Calculated values of electronic coupling for excitation energy transfer between the molecular units of the complex **amide3_edge**. The values in the matrix are total coupling (in eV). The letters in the grey cell refer to the molecular systems (see Figure S1) forming the studied complex.

VEE (nm)	\rightarrow	317	241	218	217	209
\downarrow	↓C/H→	S ₁	S ₂	S ₃	S ₄	S ₅
506	S ₁	-0.00180	0.00283	0.00386	-0.00859	0.01373
433	S ₂	0.00261	0.00053	-0.00020	0.00003	-0.00100
360	S ₃	-0.00519	0.00523	0.00577	-0.01326	0.02019
260	S_4	0.00425	0.00383	0.00328	-0.00613	0.00999
254	S ₅	0.00170	-0.00672	-0.00451	0.00102	-0.00041

References

- 1 X. Shao, A. J. A. Aquino, M. Otyepka, D. Nachtigallová and H. Lischka, *Phys. Chem. Chem. Phys.*, 2020, **22**, 22003–22015.
- 2 H. Baba and M. Aoi, J. Mol. Spectrosc., 1973, 46, 214–222.
- 3 R. S. Becker, I. Sen Singh and E. A. Jackson, J. Chem. Phys., 2004, 38, 2144.
- 4 S. Shirai and S. Inagaki, *RSC Adv.*, 2020, **10**, 12988–12998.
- 5 S. Grimme and M. Waletzke, J. Chem. Phys., 1999, 111, 5645–5655.
- 6 C. Angeli, R. Cimiraglia and J. P. Malrieu, *Chem. Phys. Lett.*, 2001, **350**, 297–305.
- 7 C. Angeli, R. Cimiraglia and J. P. Malrieu, J. Chem. Phys., 2002, 117, 9138–9153.
- 8 B. Shi, D. Nachtigallová, A. J. A. Aquino, F. B. C. Machado and H. Lischka, *J. Chem. Phys.*, 2019, **150**, 124302.
- 9 V. Lukeš, M. Ilčin, J. Kollár, P. Hrdlovič and Š. Chmela, *Chem. Phys.*, 2010, **377**, 123–131.
- 10 A. Y. Freidzon, R. R. Valiev and A. A. Berezhnoy, *RSC Adv.*, 2014, 4, 42054–42065.
- 11 M. Parac and S. Grimme, *Chem. Phys.*, 2003, **292**, 11–21.
- 12 A. Nakajima, J. Lumin., 1977, 15, 277–282.
- 13 E. A. Shirshin, G. S. Budylin, N. Y. Grechischeva, V. V. Fadeev and I. V. Perminova, *Photochem. Photobiol. Sci.*, 2016, **15**, 889–895.
- 14 D. S. Karpovich and G. J. Blanchard, J. Phys. Chem., 1995, 99, 3951–3958.
- 15 G. Basu Ray, I. Chakraborty and S. P. Moulik, J. Colloid Interface Sci., 2006, 294, 248–254.
- 16 E. L. Graef and J. B. L. Martins, J. Mol. Model., 2019, 25, 183.
- 17 C. K. Lin, J. Comput. Chem., 2018, 39, 1387–1397.
- 18 X. Niu, Y. Li, H. Shu and J. Wang, *Nanoscale*, 2016, **8**, 19376–19382.
- 19 S. Sarkar, M. Sudolská, M. Dubecký, C. J. Reckmeier, A. L. Rogach, R. Zbořil and M. Otyepka, *J. Phys. Chem. C*, 2016, **120**, 1303–1308.
- 20 M. Langer, T. Hrivnák, M. Medved' and M. Otyepka, J. Phys. Chem. C, 2021, **125**, 12140–12148.
- 21 T. Le Bahers, C. Adamo and I. Ciofini, J. Chem. Theory Comput., 2011, 7, 2498–2506.
- 22 C. Adamo, T. Le Bahers, M. Savarese, L. Wilbraham, G. García, R. Fukuda, M. Ehara, N. Rega and I. Ciofini, *Coord. Chem. Rev.*, 2015, **304–305**, 166–178.
- 23 D. Casanova and A. I. Krylov, Phys. Chem. Chem. Phys., 2020, 22, 4326–4342.
- G. M. J. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva, J. E. Deustua, D. G. Fedorov, J. R. Gour, A. O. Gunina, E. Guidez, T. Harville, S. Irle, J. Ivanic, K. Kowalski, S. S. Leang, H. Li, W. Li, J. J. Lutz, I. Magoulas, J. Mato, V. Mironov, H. Nakata, B. Q. Pham, P. Piecuch, D. Poole, S. R. Pruitt, A. P. Rendell, L. B. Roskop, K. Ruedenberg, T. Sattasathuchana, M. W. Schmidt, J. Shen, L. Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari, J. L. Galvez Vallejo, B. Westheimer, M. Włoch, P. Xu, F. Zahariev and M. S. Gordon, J. Chem. Phys., 2020, 152, 154102.