Electronic Supplementary Information

Highly efficient silica coated perovskite nanocrystals with the

assistance of ionic liquid for warm white LEDs

Yanqiao Xu,*‡^{a,b} Xiaobo Hu,‡^c Huidong Tang,^b Qing Hu,^b Sanhai Wang,^b Ting Chen,^a Xiaojun Zhang,^{a,b}

Weihui Jiang,^{a,b} Lianjun Wang,*^c and Wan Jiang^c

^aNational Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic Institute, Jingdezhen 333000, China
^bSchool of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333000, China
^cState Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials
Science and Engineering, Donghua University, Shanghai 201620, China
*Corresponding Authors. Emails: xuyanqiao@jcu.edu.cn (Y. X.); wanglj@dhu.edu.cn (L. W.)

Fig. S1 TEM image of CsPbBr₃ NCs.

Fig. S2 (a) HAADF-STEM image and (b-f) elemental maps of CsPbBr₃@SiO₂ NCs.

Fig. S3 XRD patterns of CsPbBr₃@SiO₂ NCs prepared with different hydrolysis time of APTES.

Fig. S4 Size distribution histograms of $CsPbBr_3$ cores prepared with hydrolysis time of (a) 10 s, (b) 20 s, (c) 1 min, (d) 5 min, and (e) 10 min.

Fig. S5 Decay curves of $CsPbBr_3@SiO_2 NCs$ prepared with different hydrolysis time of APTES.

Fig. S6 XRD patterns of CsPbBr₃@SiO₂ NCs prepared by one-step method with different $n_{\text{APTES}}/n_{\text{Pb}}$ ratios (Adding APTES into anti-solvent).

Fig. S7 (a) Absorption, (b) emission spectra, (c) evolution of emission intensity and peak position of CsPbBr₃@SiO₂ NCs prepared by one-step method with different $n_{\text{APTES}}/n_{\text{Pb}}$ ratios, and (d) photos of samples under sunlight and UV light (Adding APTES into anti-solvent).

Fig. S8 XRD patterns of CsPbBr₃@SiO₂ NCs prepared by one-step method with different reaction time (Adding APTES into anti-solvent).

Fig. S9 (a) Absorption and emission spectra, and (b) evolution of emission intensity and peak position of CsPbBr₃@SiO₂ NCs prepared by one-step method with different reaction time (Adding APTES into anti-solvent).

Fig. S10 (a) XPS survey spectra, and XPS element analysis of (b) Cs-3d, (c) Pb-4f, (d) Br-3d, (e) N-1s, and (f) Si-2p of CsPbBr₃ NCs and CsPbBr₃@SiO₂ NCs.

Fig. S11 XRD patterns of CsPbBr₃@SiO₂ NCs prepared with different reaction time (Without adding IL).

Fig. S12 (a) Absorption and emission spectra, and (b) evolution of emission intensity and peak position of CsPbBr₃@SiO₂ NCs prepared with different reaction time (Without adding IL).

Fig. S13 Storage stability test results of CsPbBr₃ NCs.

Fig. S14 XRD patterns of CsPbX₃@SiO₂ NCs.

Fig. S15 Optimized structures, calculated electronic band structures and density of state of (a-c) CsPbBr₃, (d-f) CsPbBrI₂, and (g-i) CsPbBrCl₂.

The theoretical calculations were carried out using Cambridge Serial Total Energy Package (CASTEP) based on plane-wave pseudo-potential.¹ Generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) was adopted for the exchange-correlation functional.² The Monkhorst $2\times2\times2$ grim was used for CsPbX₃ and the E_{cut} was set as 300 eV. Structure relaxation was stopped until the force of each atom was less than 0.01 eV/Å. The optimized structures, calculated electronic band structures, and density of state of CsPbBr₃, CsPbBrl₂, and CsPbBrCl₂ were shown in Fig. S15. It was found that the conduction band of CsPbBr₃ was composed

of 6p orbital of Pb atoms, while the valance band was formed by the antibonding interaction between Br 4p and Pb 6s states due to the strong hybridization (Fig. S15c). Moreover, the 3p orbital of Cl atoms or 5p orbital of I atoms involved in the formation of valance band when partial Br was replaced with Cl or I (Fig. S15(f) and (i)). The calculated bandgap of CsPbBr₃, CsPbBrI₂, and CsPbBrCl₂ was 2.21 eV, 1.89 eV, and 2.67 eV, respectively.

Samples	Silicon source	Reaction time	PLQY	Ref
$CH_3NH_3PbBr_3@SiO_2$	TMOS ^a	36 h	87%	Huang et al ³
$CsPbBr_3@SiO_2$	TMOS	12 h	65%	Li et al. ⁴
$CsPbBr_3@SiO_2$	APTES ^b	3 h	78%	Sun et al. ⁵
$CsPbBr_3@SiO_2$	TMOS	24 h	73.4%	Zhang et al. ⁶
CsPbBr₃@SiO _x	TEOS	10 h	_	Park et al. ⁷
$CsPbBr_3@SiO_2$	TMOS	12 h	80%	Hu et al. ⁸
$CsPbBr_3@SiO_2$	APTES ^c	20 s	85.7%	This work

Table S1 The performances of silica coated perovskite NCs

^a tetramethyl orthosilicate; ^b (3-aminopropyl)triethoxysilane; ^c tetraethyl orthosilicate.

Table S2 Fitting results of PL decay curves of CsPbBr₃@SiO₂ NCs prepared with

$n_{\rm APTES}/n_{\rm Pb}$	τ ₁ /ns	<i>B</i> ₁ /%	τ_2/ns	B ₂ /%	χ ²	τ _{av} /ns
0	10.13	91.28	60.20	8.72	0.9955	28.26
1.0	5.28	93.77	50.72	6.23	0.9990	22.98
1.5	6.14	96.91	26.04	3.09	0.9995	8.51
2.0	6.14	98.51	34.77	1.49	0.9996	8.40
2.5	16.88	95.01	62.31	4.99	0.9994	24.26
3.0	14.02	93.33	47.84	6.67	0.9994	20.65

different $n_{\text{APTES}}/n_{\text{Pb}}$ ratios

Table S3 Fitting parameters of PL decay curves of CsPbBr₃@SiO₂ NCs prepared with

Time	τ ₁ /ns	B ₁ /%	τ₂/ns	B ₂ /%	χ ²	τ _{av} /ns
10 s	6.53	97.95	24.40	2.05	0.9996	7.83
20 s	5.95	99.05	34.21	0.95	0.9995	7.43
1 min	6.14	98.51	34.77	1.49	0.9996	8.40
5 min	10.19	97.11	74.75	2.89	0.9994	21.76
10 min	13.13	96.61	65.37	3.39	0.9993	20.90
20 min	17.91	94.64	64.12	5.36	0.9995	25.70

different hydrolysis time of APTES

Samples	VBM/eV	Optical bandgap/eV	CBM/eV
CsPbBr _{0.6} Cl _{2.4}	-6.322	3.046	-3.276
CsPbBrCl ₂	-6.284	2.894	-3.390
CsPbBr ₂ Cl	-6.170	2.696	-3.474
CsPbBr₃	-5.916	2.360	-3.556
CsPbBr ₂ I	-5.881	2.258	-3.623
CsPbBrl ₂	-5.558	1.912	-3.646
SiO ₂	-8.435	8.600	0.165

Table S4 Calculation results of VBM and CBM values of CsPbX₃ NCs and SiO₂

References

- 1 M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, *J. Phys.: Condens. Matter*, 2002, **14**, 2717–2744.
- 2 J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.
- 3 S. Huang, Z. Li, L. Kong, N. Zhu, A. Shan and L. Li, Enhancing the stability of CH₃NH₃PbBr₃ quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in "waterless" toluene, *J. Am. Chem. Soc.*, 2016, **138**, 5749–5752.
- 4 M. Li, X. Zhang and P. Yang, Controlling the growth of a SiO₂ coating on hydrophobic CsPbBr₃ nanocrystals towards aqueous transfer and high luminescence, *Nanoscale*, 2021, **13**, 3860–3867.
- 5 C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang and W. W. Yu, Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots, *Adv.*

Mater., 2016, **28**, 10088–10094.

- 6 L. Zhang, Y. Xie, Z. Tian, Y. Liu, C. Geng and S. Xu, Thermal conductive encapsulation enables stable high-power perovskite-converted light-emitting diodes, *ACS Appl. Mater. Interfaces*, 2021, **13**, 30076–30085.
- S. Park, M. N. An, G. Almeida, F. Palazon, D. Spirito, R. Krahne, Z. Dang, L. D. Trizio and L. Manna, $CsPbX_3/SiO_x$ (X= Cl, Br, I) monoliths prepared via a novel sol-gel route starting from Cs_4PbX_6 nanocrystals, *Nanoscale*, 2019, **11**, 18739–18745.
- H. Hu, L. Wu, Y. Tan, Q. Zhong, M. Chen, Y. Qiu, D. Yang, B. Sun, Q. Zhang and Y.
 Yin, Interfacial synthesis of highly stable CsPbX₃/oxide Janus nanoparticles, *J. Am. Chem. Soc.*, 2018, **140**, 406–412.