Supporting Information

Synthesis of stable γ -phase MnS_{1-x}Se_x nanoflakes with inversion symmetry breaking

Bo Zheng^{1#}, Jun Fu^{2#}, Yuanmin Zhu^{3,6#}, Jing Liang^{4#}, Yongzhi She⁵, Junxiang Xiang¹,

Xiang Ma¹, Ying Zhang¹, Shasha Wang¹, Guojing Hu¹, Yuehui Zhou¹, Yan Feng¹,

Zhengping Fu¹, Nan Pan⁵, Yalin Lu^{1*}, Hualing Zeng², Meng Gu⁶, Kaihui Liu⁴, Bin

Xiang¹*

Note S1: Similar to the reported work, the SHG intensity increase with the increase of incident laser power, showing a parabola-like shape ($I \propto P^{\theta}, \theta = 2.04 \pm 0.02$), because SHG is a second-order nonlinear optical process, which should be quadratic proportional to the incident laser intensity. The electric dipole theory forecasts that under the first-order perturbation $I_{SHG} = |E(2\omega)|^2 \propto |P(\omega)|^2$, where I_{SHG} is the SHG intensity, $E(2\omega)$ is SHG electric field vector, and $P(\omega)$ is excitation power¹.

Figure S1. ZFC and FC magnetization curves of γ -phase MnS_{1-x}Se_x (*x*=0.09) nanoflakes measured with the external magnetic field H = 9 T applied along the c axis.

Figure S2. EDS elemental mapping images of Mn, S and Se in a typical $MnS_{1-x}Se_x$ (*x*=0.30) nanosheet with the shape of a triangle (a) and hexagon (b). (c) XRD patterns of as-synthesized α -phase $MnS_{1-x}Se_x$ nanosheets with x values of 0, 0.09, 0.3, 0.58 and 1. (d) Plots of XRD diffraction peaks determined from (c) as a function of the Se composition *x*.

Figure S3. The ball-and-stick models of the α -phase MnS_{1-x}Se_x crystal with the shape of hexagon (a) and triangle (b).

Figure S4. The ball-and-stick models of the γ -phase MnS_{1-x}Se_x crystal with the shape of trapezoid (a) and rectangle (b).

Figure S5. ZFC and FC magnetization curves of α -phase MnS_{1-x}Se_x (*x*=0.58) measured with the external magnetic field H = 9 T applied along the c axis.

Figure S6. EDS elemental mapping images of Mn, S and Se in a typical γ -phase MnS₁₋ _xSe_x (x=0.27) nanosheet with the shape of a trapezoid.

Figure S7. EDS elemental mapping images of Mn, S and Se in a typical rectangular (a) γ -phase MnS_{1-x}Se_x (*x*=0.09) nanosheet and (b) γ -phase MnS_{1-x}Se_x (*x*=0.27) nanowire.

Figure S8. The different morphology of γ -phase MnS_{1-x}Se_x(*x*=0.09) and α -phase MnS_{1-x}Se_x(*x*=0.30).

	x value (calculated from	x value of γ -MnS _{1-x} Se _x	x value of α -MnS _{1-x} Se _x
	precursor loading amount)	(obtained from EDS)	(obtained from EDS)
1	0	0	0
2	0.25	0.02	0.09
3	0.5	0.09	0.30
4	0.75	0.27	0.58
5	1	0.45	1

Table S1. The x value of the as-grown γ -phase MnS_{1-x}Se_x and α -phase MnS_{1-x}Se_x.

REFERENCES

1. X. Zhou, J. Cheng, Y. Zhou, T. Cao, H. Hong, Z. Liao, S. Wu, H. Peng, K. Liu and D. Yu, *J. Am. Chem. Soc.*, 2015, **137**, 7994-7997.