Supporting Information for

Lipid membrane supported on artificial extracellular matrix made of polyelectrolyte multilayers: towards nanoarchitectonics of cellular interface

Anna Vikulina,^{a,b} Alena Wulf,^a Guy Guday,^a Rawil Fakhrullin ^{c*} and Dmitry Volodkin ^{d*}

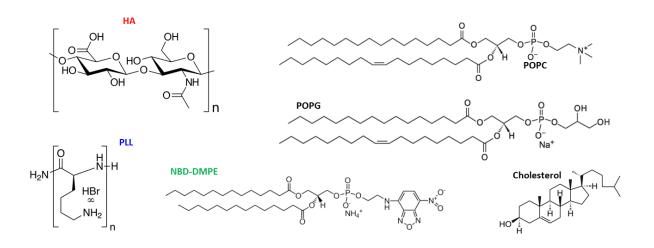
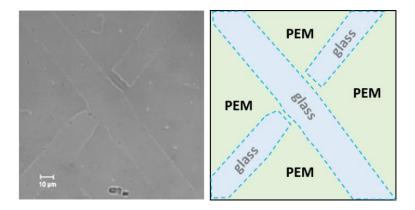
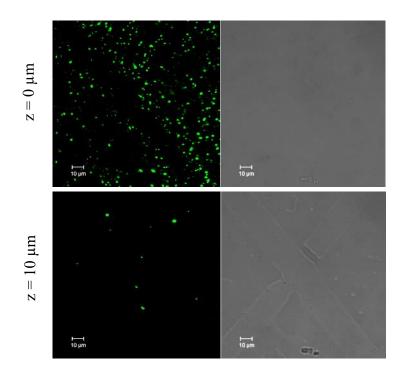
Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany

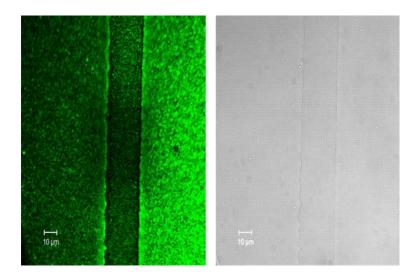
^b Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Bavarian Polymer Institute, Dr.-Mack-Straße 77, 90762 Fürth, Germany.

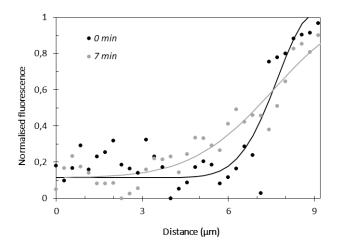
^c Kazan Federal University, Institute of Fundamental Medicine and Biology, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation. *<u>kazanbio@gmail.com</u>

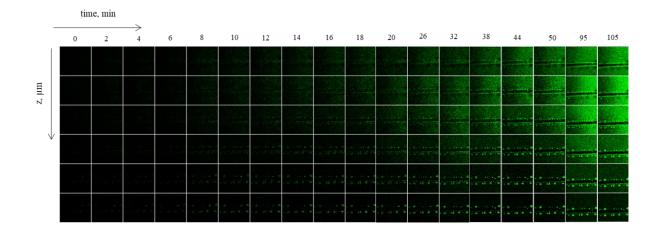
^d Nottingham Trent University, School of Science and Technology, Clifton Lane, Nottingham NG11 8NS, UK, *<u>dmitry.volodkin@ntu.ac.uk</u>

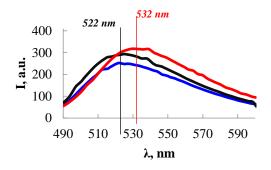
Abbreviations: HA - sodium hyaluronate, PLL - poly-l-lysine, PEM – polyelectrolyte multilayers, POPC - 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine, POPG - 2-oleoyl-1-palmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt, NBD-DMPE - N-(NBD-aminododecanoyl)-1,2-ditetradecanoyl-sn-glycero-3-phosphoethanolamine sodium salt. The liposomes POPC/POPG/Cholesterol/NBD-DMPE 7/2/1/0.5_w and POPC/Cholesterol/NBD-DMPE 9/1/0.5_w are referred as PC-PG^{NBD} and PC^{NBD} liposomes, respectively.


Figure S1. Chemical structires of the lipids and polymers used in this study.


Figure S2. Light transmittance image of $(HA/PLL)_{24}$ film deposited on the glass coverslip and cross-scratched with the needle. Scratched areas represent uncoated glass surface as a control for each experiment.


Figure S3. Confocal and light transmittance images of $(HA/PLL_{28})_{24}$ film incubated with 50 µM (total lipids) PC-PG^{NBD} liposome suspension at different *z*-distances from the top of the film. At z = 0 µm, the scratch is in focus. Plenty of PC-PG^{NBD} liposome aggregates is clearly seen. At z = 10 µm, the scratch is out of focus. The aggregates of PC-PG^{NBD} liposomes are also clearly seen in a lower amount, likely due to their fast sedimentation.


Figure S4. CLSM images of $(HA/PLL280)_{24}$ multilayers planar films incubated with the suspension of PC^{NBD} liposomes (50 µM total lipids in Tris buffer solution pH 7.4) for 20 minutes.

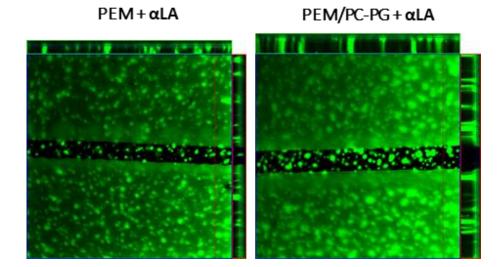

Figure S5. Normalized PE-NBD fluorescence fluorescence profiles after photobleaching (black) and after 7 minutes after the fluorescence recovery (grey) fitted with Gaussian function (half-Gaussians are shown). Lipid coating was supported on $(HA/PLL280)_{24}$ multilayers by their incubation with the suspension of PC-PG^{NBD} liposomes (50 µM total lipids in Tris buffer solution pH 7.4) for 20 minutes.

Figure S6. Confocal images of $(HA/PLL280)_{24}$ miltilayer film at different time points and at different distance (z) from the surface of the multilayers after addition of 50 μ M (total lipids) PC-PG^{NBD} liposome suspension in Tris buffer pH 7.4. Each image is 145×145 μ m.

Figure S7. Emission spectra of PC-PG^{NBD} non-reacted with PEMs (red) and after incubation with $(HA/PLL_{280})_{24}$ multilayers for 15 (black) and 120 minutes (blue).

Figure S8. Confocal images of uncoated (HA/PLL280)₂₄ multilayers (left) and (HA/PLL280)₂₄ coated with PC-PG liposomes (right) after incubation with α -lactalbumin-FITC for 30 minutes. Incubation medium: Tris buffer solution pH 7.4. Each image is 145×145µm.