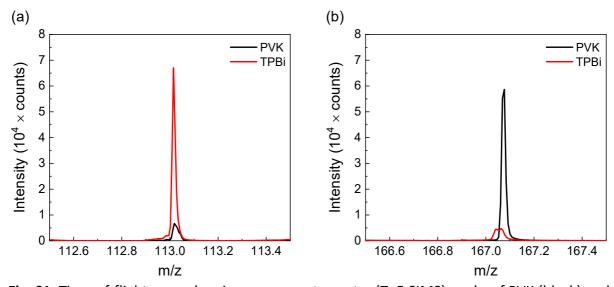
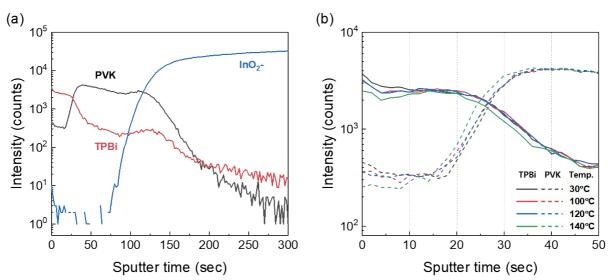
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2022

Electronic Supporting Information

Probing impact of interface mixing on charge carrier dynamics of a solutionprocessed organic light emitting diode via impedance spectroscopy


Ji Soo Kim,^a Soon-Hyung Kwon,*b and Youn Sang Kim*a,c,d

^aDepartment of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea. E-mail: younskim@snu.ac.kr


^bDisplay Research Center, Korea Electronics Technology Institute, 25 Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13509, Republic of Korea. E-mail: kwonsh@keti.re.kr

^cSchool of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.

^dAdvanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon, 16229, Republic of Korea

Fig. S1. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) peaks of PVK (black) and TPBi (red) near **(a)** 113 and **(b)** 167 m/z.

Fig. S2. (a) ToF-SIMS depth profiles of PVK (black), TPBi (red) and ITO (blue). **(b)** PVK (dashed line) and TPBi (solid line) depth profiles annealed at 30 (black), 100 (red), 120 (blue), and 140°C (green).