Supporting Information

Synthesis and Degradation Mechanism of Renal Excretable Gold Core Shell Nanoparticles for Combined Photothermal And Photodynamic Therapy

Barkha Singh^{a.b}, Chetna Patnaik^c, Rohan Bahadur^b, Mayuri Gandhi^a, Abhijit De^{c*}, Rohit Srivastava^{b*}

- a- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India
- b- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India

S.No	Nanomaterial	Advantages	Disadvantages	References
1.	Liposomes	Can synergize PTT-	Low stability	1,2
		chemotherapy Temperature-sensitive	Low circulation times in the blood	
		Heat controlled drug release possible	Production Cost is high	
		Increases drug loading efficiency.		
2.	Organic Dye based	strong near-infrared absorbance	Limited aqueous stability	3–5
	Nanoparticles (eg- Indocyanine Green)	High light to heat conversion efficiency	low fluorescence quantum yield in aqueous solution	
		great biocompatibility	Rapid body clearance	
		Can be used as a near infrared fluorescence probe.	a challenge in distinguishing malignant from inflammatory tissue.	
3.	Polymer nanoparticles	Customizable molecular structures	Low Photothermal conversion efficiency	6
		Large absorption coefficient		
	Eg- polypyrrole PEG nononarticles	Non-toxic		
	(NPs)	Used as drug delivery systems		
4.	Gold nanoparticles	Biocompatible	Size greater than 20 nm which is a major roadblock	
	(Au NPs)	Can be delivered locally into the tumor location while reducing non-specific distribution.	in renal clearance of the Nanoparticles. Can be overcome by liposomal coating.	
		Can penetrate deep into biological tissues.	body	
		Easily modified.		
		ROS scavenging		

Table S1 Various types of biodegradable nanoagents for cancr therapy

		ability.		
5				
	Gold Nanoshell	Disintegrable system	Can be expensive	7,8
		Stimuli responsive	Stability	
		Stinun-responsive	Stability	
		Biocompatible		
6.	Two dimonsional	The number of lovers	DEGulation of 2D	9.10
	i wo-unnensional (2D)	of the material can be	Nanoparticles leads to	
	(2D) nanomaterials	changed	production of anti-PEG	
	nunomuteriuis	enungeu	antibodies.	
		Large surface area for		
		housing drug	Low yield	
	Ex- MXene	molecules		
			Untargeted toxicity	
		Amenable to surface	T 1'' 1 / 1 /'	
		modification.	Low clinical translation	
7.	Transition Motal	Strong X-ray	I ow water solubility	11
	Dichalcogenides	attenuation ability that	Low water solubility	
	(TMDs) /	can be used for CT	Non-uniformity	
	quaternary	imaging of tumors.	5	
	chalcogenide		Low colloidal stability.	
	nanocrystal	Can be used for		
		combined PTT-PDT.		
		Can be also used as a		
0		arug denvery system.		
0.	Semiconductor	Small size	Quantum dots (QDs) are	12,13
	quantum dots	Sinun 5120	composed of heavy metals	
	4 a o to	Easy penetration into	so can be toxic.	
		cells		
		Generate Reactive		
		oxygen species (ROS).		
		Can be used in fluorescent imaging		

Figure S1 scanning electron microscopy (SEM) images of Zein NPs (a) 10 mL batch (b) 60 mL batch [scale: 100nm]

Figure S2 SEM images of Au_{Zein} and size distribution of $Au_{Zein}(a-b)$ 500µl batch (c-d) 200 mL batch [scale: 1µm]

Figure S3 FTIR spectra of Zein powder and Zein NPs

Figure S4 Morphological characterization of $gAu_{Zein}(a)SEM$ image (b)TEM image

Figure S5 Effect of different cryopreservants on (a) UV-vis spectrum (b-c) SEM images of gAu_{Zein} lyophilized along with 1% Sucrose. [scale:100nm]

IITB-

Figure S6 (a) Absrobance spectra of gAu_{Zein} at various concentration (b) The molarity vs. absorbance of gAu_{Zein} at absorption wavelength of 750 nm

Figure S7 (a) Absorbance spectra of gAuzein at different pH range from 5-7

Figure S8 Zeta Potential of gAuzein at different pH range from 5-9

Figure S9 Photothermal properties of gAu_{zein} (a) Temperature profile at 767 mW using 750 nm (b) Temperature profile at 767 mW using 808 nm (c) absorbance spectra of gAu_{zein} after continuous irradiation of 750 nm laser for 30 minutes(d) Heating and cooling kinetics of Milli-Q when laser irradiation is on and off, respectively (d) Graphical representation of time vs natural logarithm of temperature (θ) to calculate thermal constant τ s for Milli-Q

Figure S10 SEM images of (a-b) control cells (c-d) cells incubated with gAuZein

Figure S11 (a) absorbance spectra of gAu_{Zein} dispersed in PBS at different time period (b) absorbance reading in the wavelength range 500-1100.(c) absorbance spectra at time 0 minutes after heating at different temperature (d) absorbance spectra after heating at different temperature and then incubating at 37^oC for 24 hours

Figure S12 TEM images to show disintegration of $gAu_{Zein}(a-c)5$ minutes after laser irradiation (inset- tiny gold seeds under <20 nm) (d-e) observed after incubation at 37°C for 24 hours. The material loses its morphology and releases small gold seeds.

Figure S13 Partial degradaed gAu_{Zein} in Tumor section.

Figure S14 Small gold seeds observed in kidney in control mice

References:

- 1 L. Sercombe, T. Veerati, F. Moheimani, S. Y. Wu, A. K. Sood and S. Hua, *Front. Pharmacol.*, 2015, **6**, 286.
- 2 T. O. B. Olusanya, R. R. H. Ahmad, D. M. Ibegbu, J. R. Smith and A. A. Elkordy, *Molecules*, 2018, 23.
- 3 H. Wang, X. Li, B. W. C. Tse, H. Yang, C. A. Thorling, Y. Liu, M. Touraud, J. B. Chouane, X. Liu, M. S. Roberts and X. Liang, *Theranostics*, 2018, 8, 1227–1242.
- 4 Y. Cai, W. Si, W. Huang, P. Chen, J. Shao and X. Dong, *Small*, 2018, 14.
- 5 M. Sevieri, F. Silva, A. Bonizzi, L. Sitia, M. Truffi, S. Mazzucchelli and F. Corsi, *Front. Chem.*, 2020, 8, 535.
- W. Zeng, X. Wu, T. Chen, S. Sun, Z. Shi, J. Liu, X. Ji, X. Zeng, J. Guan, L. Mei and M. Wu, *Adv. Funct. Mater.*, 2021, **31**, 2008362.
- A. K. Rengan, A. B. Bukhari, A. Pradhan, R. Malhotra, R. Banerjee, R. Srivastava and
 A. De, *Nano Lett.*, 2015, 15, 842–848.
- 8 B. P. K. Reddy, S. K. Mishra, G. Ravichandran, D. S. Chauhan, R. Srivastava and A. De, *Appl. Mater. Today*, 2020, **20**, 100684.
- 9 I. A. Vasyukova, O. V. Zakharova, D. V. Kuznetsov and A. A. Gusev, *Nanomaterials*, 2022, 12.

- X. Ren, M. Huo, M. Wang, H. Lin, X. Zhang, J. Yin, Y. Chen and H. Chen, *ACS Nano*, 2019, 13, 6438–6454.
- 11 J. Hao, G. Song, T. Liu, X. Yi, K. Yang, L. Cheng and Z. Liu, *Adv. Sci.*, 2017, 4, 1600160.
- T. Liu, Y. Chao, M. Gao, C. Liang, Q. Chen, G. Song, L. Cheng and Z. Liu, *Nano Res.*, 2016, 9, 3003–3017.
- L. Zhang, Y. Liu, H. Huang, H. Xie, B. Zhang, W. Xia and B. Guo, *Adv. Drug Deliv. Rev.*, 2022, 190, 114536.