Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2022

Supporting information for:

Lightweight and Flexible PAN@PPy/MXene Films with Outstanding Electromagnetic Interference Shielding and Joule Heating Performance

Fushuo Wu¹, Zhihua Tian¹, Peiying Hu¹, Jingwen Tang¹, Xueqin Xu¹, Long Pan¹,

Jian Liu,^{1,2} Peigen Zhang^{1*}, ZhengMing Sun^{1*}

- 1. Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, P. R. China
- 2. Wuxi Lintex Advanced Materials Co., Ltd., Wuxi, P. R. China.

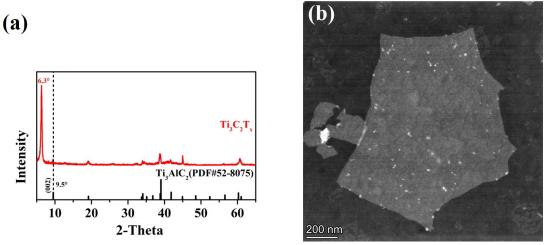


Fig. S1 (a) XRD patterns of Ti₃AlC₂ and Ti₃C₂T_x MXene. (b) a TEM image of Ti₃C₂T_x nanosheets.

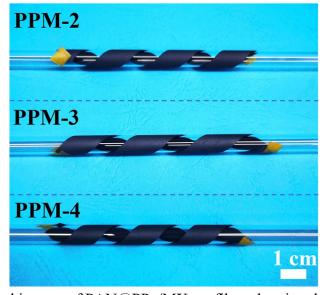


Fig. S2 Digital images of PAN@PPy/MXene films showing their flexibility.

^{*} Corresponding authors: zhpeigen@seu.edu.cn; zmsun@seu.edu.cn;

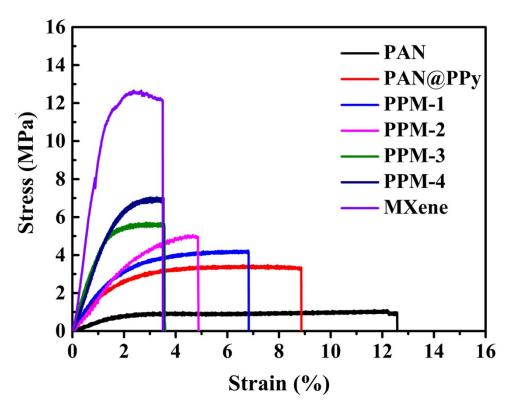


Fig. S3 Stress-strain curves of PAN, PAN@PPy, PAN@PPy/MXene and MXene films.

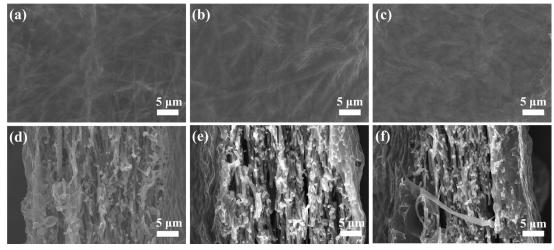


Fig. S4 Surface morphology of PAN@PPy/MXene films: (a) PPM-2 films; (b) PPM-3 films; (c) PPM-4 films. Cross-section morphology of PAN@PPy/MXene films: (d) PPM-2 films; (e) PPM-3 films; (f) PPM-4 films.