Supporting Information

Title

Correlation between oxygen evolution reaction activity and surface compositional evolution in epitaxial $La_{0.5}Sr_{0.5}Ni_{1-x}Fe_xO_{3-\delta}$ thin films

Author Names and affiliations

Prajwal Adiga¹, Le Wang^{2,*}, Cindy Wong¹, Bethany E. Matthews³, Mark E. Bowden⁴, Steven R. Spurgeon^{3,5}, George E. Sterbinsky⁶, Monika Blum,⁷ Min-Ju Choi², Jinhui Tao², Tiffany C. Kaspar², Scott A. Chambers², Kelsey A. Stoerzinger^{1,2,*}, Yingge Du²

¹ School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon, 97331, USA

² Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA

³ Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA

⁴ Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA

⁵ Department of Physics, University of Washington, Seattle, Washington 98195, USA

⁶ Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA

⁷ Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA

Corresponding author

* Email address: le.wang@pnnl.gov; kelsey.stoerzinger@oregonstate.edu

Fig. S1: (a) Extended XRD θ -2 θ scans for La_{0.5}Sr_{0.5}Ni_{1-x}Fe_xO_{3- δ} (LSNFO) solid solution epitaxial films grown on LSAT. The peak near 55° in the XRD scans originates from our XRD setup.¹ (b) Reciprocal space maps for LSNFO films confirm structural coherence. (c) Out-of-plane lattice parameter (c) as a function of Fe content (x) in LSNFO. The blue and purple dashed lines denote the pseudo-cubic lattice constants for bulk LNO and bulk SrNiO3,^{2, 3} based on which the pseudo-cubic lattice constant of bulk La_{0.5}Sr_{0.5}NiO₃ should be ~3.825 Å, which is smaller than that (3.868 Å) of the LSAT substrate. Hence, c for the x = 0 film is expected to be smaller than the bulk value (3.825 Å). With Fe doping, c for x > 0 films is expected to be larger than that of the x = 0 film due to the larger pseudo-cubic lattice constant (~3.883 Å)⁴ of bulk La_{0.5}Sr_{0.5}FeO₃ compared to bulk La_{0.5}Sr_{0.5}NiO₃. However, experimentally we observed larger value c (~3.875 Å) for the x = 0 film and the decrease of c with increasing x from 0.125 to 0.375, suggesting that these solid solution samples may contain non-negligible amounts of oxygen vacancies. (d) Resistivity versus temperature curves for LSNFO films on heating.

Fig. S2: (a-e) Cyclic voltammetry (CV) and chronoamperometric (CA) measurements for LSNFO films show time-dependent activity changes. The redox peaks for $x \ge 0.375$ show secondary Ni reduction peak indicative of a secondary Ni phase.

Fig. S3: Tafel slopes for LSNFO.

Fig. S4: (a-e) Fe reduction region of CV-3 for compositions x = 0 - 0.5, and decreasing magnitude of charge associated with Fe reduction with cycle number. (f) Example of the integrated reduction peak, multiplied by the sweep rate (10 mV/s) to estimate the reduction charge for Fe.

Fig S5: Dynamic changes in the Fe reduction charge indicates dynamic nature of Fe adsorption from trace Fe species in the solution.⁵ In contrast, Ni reduction charge generally increased with cycling during CV-3 (inset of Figure 3b).

Fig. S6: Atomic force microscopy (AFM) images on selected LSNFO films show larger surface roughness after cycling.

Theoretical calculation for estimating surface Ni (Sample calculation for x = 0.375)

Assume idealized cubic cell structure for the perovskite oxide:

Unit cell area, $A_{u.c.} = c^2 = (3.822x10^{-10})^2 = 1.48x10^{-19}m^2$

where, c = Lattice parameter (in Å)

Number of unit cells,

Geometric area of the electrode, $A_{geo} = \frac{\pi}{4}d^2 = \frac{\pi}{4}(\frac{1}{8}x0.0254)^2 = 7.9173x10^{-6}m^2$

$$n_{u.c.} = \frac{A_{geo}}{A_{u.c.}} = 5.42 \times 10^{13}$$

With one B-site atom per perovskite unit cell,

Total Ni atoms, $N_{Ni} = n_{u.c.} x(1 - 0.375) = 5.42 x 10^{13} x(1 - 0.375) = 3.39 x 10^{13} atoms$

Estimated Ni atoms per m², $\frac{N_{Ni}}{A_{geo}} = \frac{3.39 \times 10^{13}}{7.9173 \times 10^{-6}} = 4.28 \times 10^{18} \frac{atoms}{m^2}$

Estimated Ni atoms per nm², $\frac{\frac{4.28 \times 10^{18} atoms}{(10^{9})^2 nm^2} 4.28 \frac{atoms}{nm^2}}{nm^2}$

Reference

- 1. L. Wang, Z. Yang, X. Yin, S. D. Taylor, X. He, C. S. Tang, M. E. Bowden, J. Zhao, J. Wang, J. Liu, D. E. Perea, L. Wangoh, A. T. S. Wee, H. Zhou, S. A. Chambers and Y. Du, *Science Advances*, 2021, **7**, eabe2866.
- 2. A. S. Disa, D. P. Kumah, J. H. Ngai, E. D. Specht, D. A. Arena, F. J. Walker and C. H. Ahn, *APL Materials*, 2013, **1**, 032110.
- 3. L. Wang, Z. Yang, M. E. Bowden, J. W. Freeland, P. V. Sushko, S. R. Spurgeon, B. Matthews, W. S. Samarakoon, H. Zhou, Z. Feng, M. H. Engelhard, Y. Du and S. A. Chambers, *Advanced Materials*, 2020, **32**, 2005003.
- 4. X. N. Ying and L. Zhang, *Solid State Communications*, 2012, **152**, 1252-1255.
- 5. P. P. Lopes, D. Y. Chung, X. Rui, H. Zheng, H. He, P. Farinazzo Bergamo Dias Martins, D. Strmcnik, V. R. Stamenkovic, P. Zapol, J. F. Mitchell, R. F. Klie and N. M. Markovic, *Journal of the American Chemical Society*, 2021, **143**, 2741-2750.