Electronic Supplementary Information

Tuning Nanostructures and Molecular Orientation of High Molecular Weight Diketopyrrolopyrrole-Based Polymers for High-Performance Field-Effect Transistors

Junyang Deng,^{a,b} Yifu Guo,^a Weiwei Li,^c Zhenhua Xie,^{d,e} Yubin Ke, ^{d,e} René A. J. Janssen,^f and Mengmeng Li^{*a,b}

*Email: limengmeng@ime.ac.cn

Figure S1. Annual number of scientific publications on "diketopyrrolopyrrole polymer" since 1993, searched using Web of Science.

Figure S2. Polymerization reaction used for PDPP3T. Details can be found in literature¹.

Figure S3. GPC traces of two batches of PDPP3T.

Figure S4. Decomposition analysis of representative absorption spectra in Figure 1.

Figure S5. SANS profiles and fitted lines for PDPP3T solutions, where deuterated CF-*d* and CB-*d5* were used to dissolve polymers. The Porod law, $I(q) \sim q^{-n}$, where I(q) is the scattering intensity and the Porod exponent n is the fractal dimension of scattering objects, was used for fitting.

Figure S6. Contact angles of PDPP3T films with different molecular weights.

Figure S7. Fourier transform images from AFM images in Figure 3. All images share the same scale bar.

Figure S8. AFM height images of LMW and HMW PDPP3T thin films spin-coated from CF and CB. HMW films always show longer nanofibers compared with LMW one, well consistent with Figure 3.

Figure S9. Intensity azimuthal pole figure plots for the (100) interlayer and (010) π - π stacking reflections.

Figure S10. Transfer characteristics of PDPP3T polymer transistors from *o*-DCB. HMW polymer transistors show higher mobility (0.17 cm² V⁻¹ s⁻¹) compared to LMW (0.025 cm² V⁻¹ s⁻¹). Toluene as solvent is also tested, and LHM polymer transistors show a mobility of 0.043 cm² V⁻¹ s⁻¹, while HMW polymer is almost insoluble.

Figure S11. DPP-based polymers with tunable packing orientation through modification of chemical structures.

Polymer	Monomer 1	Monomer 2	M _n	M _w	PDI	M _{peak}
	(equ)	(equ)	(kg mol⁻¹)	(kg mol ⁻¹)		(kg mol ⁻¹)
HMW	1	1.05	68.2	254.8	3.73	238.9
LMW	1	1.2	42.6	78.7	1.85	75.4

Table S1. The molar ratio of two monomers used for polymerization.

 Table S2. Fitted parameters for solution absorption spectra using nucleation-elongation cooperative model.

polymer	solvent	ΔH _e (kJ mol⁻¹)	<i>Т</i> _е (°С)	R ² (%)
	CF	-55.2	93	99.9
LIVIVV	СВ	-35.2	125	98.8
	CF	-47.1	117	99.9
	СВ	-80.6	104	98.9

 Table S3. Summary of DPP based polymers with tunable packing orientation.

	,		<u> </u>	
strategy	polymers Orientation		Ref.	
chemical	side chain	P1-P3	Face on/Edge on	2
		P4-P7	Face on/Edge on	3
		P8-P11	Face on/Edge on/Amorphous	4
		P12-P14	Face on/Edge on	5
		P15-P18	Face on/Edge on	6
		P19-P23	Face on/Edge on	7
		P24-P28	Face on/Edge on	8
		P29-P31	Face on/Edge on	9
		P32-P34	Edge on	10
		P35-P36	Edge on/Mixed	11
structure		P37-P38	Face on/Edge on	12
		P39-P40	Face on/Edge on	13
		P41-P44	Face on/Edge on/Mixed	14, 15
		P45-P47	Edge on	16
		P48-P50	Face on/Edge on	17
		P51-P58	Face on/Edge on	18-21
	conjugated	P59-P62	Mixed	22
	segment	P62-P64	Face on/Edge on	23
		P65-P68	Face on/Edge on/Mixed	24
solvent quality		PDPP3T	Face on/Edge on	This work

	Solvent	Solubility (mg mL ⁻¹)
1 5 4 5 4 /	CF	>30
LIVIVV	СВ	>30
	CF	5-8
	СВ	8-10

Table S4. Solubility of PDPP3T in CF and CB.

References

- J. C. Bijleveld, A. P. Zoombelt, S. G. J. Mathijssen, M. M. Wienk, M. Turbiez, D. M. de Leeuw and R. A. J. Janssen, *Journal of the American Chemical Society*, 2009, **131**, 16616-16617.
- 2. F. Wang, K. Nakano, H. Segawa and K. Tajima, *Chemistry of Materials*, 2019, **31**, 2097-2105.
- M. S. Chen, O. P. Lee, J. R. Niskala, A. T. Yiu, C. J. Tassone, K. Schmidt, P. M. Beaujuge, S. S. Onishi, M. F. Toney, A. Zettl and J. M. Frechet, J Am Chem Soc, 2013, 135, 19229-19236.
- M. Gruber, S. H. Jung, S. Schott, D. Venkateshvaran, A. J. Kronemeijer, J. W. Andreasen, C. R. McNeill, W. W. H. Wong, M. Shahid, M. Heeney, J. K. Lee and H. Sirringhaus, *Chem Sci*, 2015, 6, 6949-6960.
- 5. C. H. Lee, Y. Y. Lai, J. Y. Hsu, P. K. Huang and Y. J. Cheng, *Chem Sci*, 2017, **8**, 2942-2951.
- 6. M. Akita, I. Osaka and K. Takimiya, *Materials (Basel)*, 2013, 6, 1061-1071.
- B. C. Schroeder, T. Kurosawa, T. Fu, Y. C. Chiu, J. Mun, G. J. N. Wang, X. Gu, L. Shaw, J. W. E. Kneller, T. Kreouzis, M. F. Toney and Z. Bao, *Advanced Functional Materials*, 2017, 27.
- 8. J. Shin, G. E. Park, D. H. Lee, H. A. Um, T. W. Lee, M. J. Cho and D. H. Choi, *ACS Appl Mater Interfaces*, 2015, **7**, 3280-3288.
- 9. G. Y. Lee, A. R. Han, T. Kim, H. R. Lee, J. H. Oh and T. Park, ACS Appl Mater Interfaces, 2016, 8, 12307-12315.
- I. Meager, R. S. Ashraf, S. Mollinger, B. C. Schroeder, H. Bronstein, D. Beatrup, M. S. Vezie, T. Kirchartz, A. Salleo, J. Nelson and I. McCulloch, J Am Chem Soc, 2013, 135, 11537-11540.
- 11. S.-H. Kang, H. R. Lee, G. K. Dutta, J. Lee, J. H. Oh and C. Yang, *Macromolecules*, 2017, **50**, 884-890.
- 12. S. Y. Son, G. Y. Lee, S. Kim, W. T. Park, S. A. Park, Y. Y. Noh and T. Park, *ACS Appl Mater Interfaces*, 2019, **11**, 10751-10757.
- 13. X. Guo, S. R. Puniredd, M. Baumgarten, W. Pisula and K. Mullen, Adv Mater, 2013, 25, 5467-5472.
- 14. J. Lee, A. R. Han, J. Kim, Y. Kim, J. H. Oh and C. Yang, J Am Chem Soc, 2012, 134, 20713-20721.
- 15. J. Lee, A. R. Han, H. Yu, T. J. Shin, C. Yang and J. H. Oh, *J Am Chem Soc*, 2013, **135**, 9540-9547.
- 16. J. Yao, C. Yu, Z. Liu, H. Luo, Y. Yang, G. Zhang and D. Zhang, J. Am. Chem. Soc., 2016, 138, 173-185.
- 17. Z. Wang, Z. Liu, L. Ning, M. Xiao, Y. Yi, Z. Cai, A. Sadhanala, G. Zhang, W. Chen, H. Sirringhaus and D. Zhang, *Chem. Mater.*, 2018, **30**, 3090-3100.
- X. Zhang, L. J. Richter, D. M. DeLongchamp, R. J. Kline, M. R. Hammond, I. McCulloch, M. Heeney, R. S. Ashraf, J. N. Smith, T. D. Anthopoulos, B. Schroeder, Y. H. Geerts, D. A. Fischer and M. F. Toney, *J Am Chem Soc*, 2011, **133**, 15073-15084.
- J. S. Lee, S. K. Son, S. Song, H. Kim, D. R. Lee, K. Kim, M. J. Ko, D. H. Choi, B. Kim and J. H. Cho, *Chem. Mater.*, 2012, **24**, 1316-1323.
- 20. Z. Yi, X. Sun, Y. Zhao, Y. Guo, X. Chen, J. Qin, G. Yu and Y. Liu, *Chem. Mater.*, 2012, **24**, 4350-4356.
- 21. H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu and Y. Liu, Adv Mater, 2012, 24, 4618-4622.
- 22. J. Yang, H. Wang, J. Chen, J. Huang, Y. Jiang, J. Zhang, L. Shi, Y. Sun, Z. Wei, G. Yu, Y. Guo, S. Wang and Y. Liu, *Adv Mater*, 2017, **29**.
- J. D. Yuen, J. Fan, J. Seifter, B. Lim, R. Hufschmid, A. J. Heeger and F. Wudl, *J Am Chem Soc*, 2011, 133, 20799-20807.
- 24. T. Hasegawa, M. Ashizawa, J. Hiyoshi, S. Kawauchi, J. Mei, Z. Bao and H. Matsumoto, *Polymer Chemistry*, 2016, **7**, 1181-1190.