Supporting Information

Porous carbon-based metal-free monolayers towards to high stable

and flexible wearable thermoelectric and microelectronics

Xiaoran Shi¹, Hongsheng Liu¹, Ziyu Hu^{2*}, Jijun Zhao^{1,3}, Junfeng Gao^{1,3*}

¹Key Laboratory of Materials Modification by Laser, Ion and Electron Beams

(Dalian University of Technology), Ministry of Education, Dalian 116024, China

²College of Mathematics and Physics, Beijing University of Chemical Technology,

Beijing 100029, People's Republic of China

³State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China

Corresponding authors: gaojf@dlut.edu.cn and huziyu@mail.buct.edu.cn

Fig. S1 (a) Schematic illustrations of the bonds of g-MC-A and g-MC-B. Strain-length curves for (b) g-MC-A and (c) g-MC-B along x/y direction.

Fig. S2. Band structures of (a) g-MC-A and (b) g-MC-B on the HSE06 level, the fermi level is shifted to zero.

Fig. S3 Thermoelectric parameters of g-MC-A. (a) Seebeck coefficient. (b) Conductivity. (c) Power factor. (d) Thermal conductivity.

Fig. S4 Thermoelectric parameters of g-MC-B. (a) Seebeck coefficient. (b) Conductivity. (c) Power factor. (d) Thermal conductivity.

	-	-		1	
Material	Carrier	C_{2D} (N/m)	$\boldsymbol{m^*}(\boldsymbol{m}_0)$	$\boldsymbol{E}_{1}\left(\mathrm{eV} ight)$	μ (10 ³ cm ² V ⁻¹ s ⁻¹)
g-MC-A	electron-x	155	0.23	1.58	25.7
	electron-y	153	0.20	4.77	3.9
	hole-x	155	0.07	3.34	49.2
	hole-y	153	0.48	3.07	1.6
g-MC-B	electron-x	154	0.32	1.67	11.4
	electron-y	155	0.16	5.13	5.0
	hole-x	154	0.25	3.28	5.0
	hole-y	155	0.33	3.35	2.8

Table S1 2D elastic modulus, effective masses, deformation potential and carrier mobilities. The orientations of x and y are defined in Fig. 1.

Table S2 The relaxation time τ for g-MC.

Material	Carrier	τ (ps)
g-MC-A	electron-x	3.36
	electron-y	0.43
	hole-x	1.96
	hole-y	0.44
g-MC-B	electron-x	2.07
	electron-y	0.45
	hole-x	0.71
	hole-y	0.53