Supplementary Information

Apex Hydrogen Bonds in Dendron Assembly Modulate Close-packed

Mesocrystal Structures

Taesuk Jun,^a Hyunjun Park,^b Seungbae Jeon,^a Hyungju Ahn,^c Woo-Dong Jang,^{b,*} Byeongdu Lee,^{d,*} and Du Yeol Ryu^{a,*}

^aDepartment of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
^bDepartment of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
^cIndustry Technology Convergence Center, Pohang Accelerator Laboratory, 80 Jigok-ro, Nam-gu, Pohang 37673, Korea.
^dAdvanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.

*Correspondence to wdjang@yonsei.ac.kr (W. J.), blee@anl.gov (B. L.), and dyryu@yonsei.ac.kr (D. Y. R.).

Supporting Figures

Fig. S1 DSC thermograms measured at a cooling rate of -10 °C/min from 150 to -30 °C.

Fig. S2 SAXS intensity profiles of a dendron assembly with f = 0.103. The A15 and σ phases coexist at temperatures lower than 114 °C. However, the σ phase continues to grow at the expense of the A15 phase as the temperature increases.

Fig. S3 SAXS intensity profiles of dendron assemblies with (a) f = 0.293, (b) f = 0.391, (c) f = 0.491, and (d) f = 0.592, displaying that only the σ phases become an isotropic phase with increasing temperature. Miller indices of σ phase are marked on the intensity profile measured at 95 °C (a). The σ phase window extends from f = 0.198 to f = 0.592, although the characteristic intensities of σ phase diminish with increasing f.

Fig. S4 SAXS intensity profiles of a dendron assembly with f = 0.743. The DDQC phase persists to 62 °C and transforms into the σ phase at 65 °C prior to becoming an isotropic phase above 70 °C. These DDQC– σ transition and isotropisation occur at slightly lower temperatures than those of f = 0.698.

Fig. S5 SAXS intensity profiles and 2D diffraction patterns of a dendron assembly with f = 0.698 depending on the different annealing times of 1 day (left) and 2 months (right). The slow-cooling (-1 °C/min) phase from an isotropic state was not the DDQC but the σ phase (left) within the experimental time scale of 1 day. However, the DDQC phase (right) was fully recovered when the sample was reannealed at 30 °C for a long period of 2 months.

Fig. S6 SAXS intensity profiles of dendron assemblies with (a) f = 0.845 and (b) f = 0.897, displaying that only the DDQC phases become an isotropic phase with increasing temperature. Five-dimensional indices of DDQC phase are marked on the intensity profile measure at 30 °C (a).

Fig. S7 ED map reconstruction process for the DDQC phase from a dendron assembly with f = 0.845 (at 30 °C). Large-area quasiperiodic patterns of DDQC phase are retrieved from its ideal fractional coordinates and the unit cell size determined from the X-ray data, which is compiled by a representative region of the quasiperiodic patterns.

Phase	Sample	<i>T</i> (°C)	<i>a</i> (= <i>b</i>), <i>c</i> (nm)	R (nm) ^a	$ar{\mathbf{C}}\mathbf{N}$ b	$\Delta V/\overline{V}$ c
A15 (Pm3n)	$f_{(G2 - CH2NH2)} = 0.049$	101	7.19, 7.19	2.23	13.500	0.01187
	Wyckoff position	CN	Number of Voronoi cell	Surface area of cell (nm ²)	Volume of cell (nm ³)	IQ
	2a	12	2	68.74	45.38	0.749
	6c	14	6	69.71	46.85	0.766
Phase	Sample	<i>T</i> (°C)	<i>a</i> (= <i>b</i>), <i>c</i> (nm)	R (nm)	ĒΝ	$\Delta V/V$
σ (P4 ₂ /mnm)	$f_{(G2 - CH2NH2)} = 0.198$	100	13.0, 6.84	2.12	13.467	0.04127
	Wyckoff position	CN	Number of Voronoi cell	Surface area of cell (nm ²)	Volume of cell (nm ³)	IQ
	2a	12	2	57.55	35.62	0.744
	4f	15	4	63.28	42.43	0.786
	8j	14	8	61.28	40.00	0.767
	8i	12	8	59.27	37.48	0.746
	8i'	14	8	62.04	40.75	0.766
Phase	Sample	<i>T</i> (°C)	<i>a</i> (= <i>b</i>), <i>c</i> (nm)	[₽] (nm)	ĒΝ	$\Delta V/V$
DDQC	$f_{(G2 - CH2NH2)} = 0.799$	30	7.17, 7.28	2.24	13.429	0.07368
	Position	CN	Number of Voronoi cell	Surface area of cell (nm ²)	Volume of cell (nm ³)	IQ
	Top/bottom loop	12	3	64.84	42.36	0.745
	Center	14	2	69.43	47.26	0.757
	Middle loop	15	2	72.45	51.41	0.789
Phase	Sample	<i>T</i> (°C)	<i>a</i> (= <i>b</i>), <i>c</i> (nm)	R (nm)	ĒΝ	$\Delta V/\bar{V}$
C14 (<i>P</i> 6 ₃ / <i>mmc</i>)	$f_{(G2 - CH2NH2)}$	56	7.21, 11.8	2.19	13.333	0.09491
) = 0.924					
) = 0.924 Wyckoff position	CN	Number of Voronoi cell	Surface area of cell (nm ²)	Volume of cell (nm ³)	IQ
) = 0.924 Wyckoff position 2a	CN 12	Number of Voronoi cell 2	Surface area of cell (nm ²) 63.83	Volume of cell (nm ³) 41.26	IQ 0.739
) = 0.924 Wyckoff position 2a 4f	CN 12 16	Number of Voronoi cell 2 4	Surface area of cell (nm ²) 63.83 70.31	Volume of cell (nm ³) 41.26 49.92	IQ 0.739 0.810

Table S1. Structural	analysis of r	epresentative su	pramolecular	dendron	assemblies

$$\bar{V} = 4\pi \bar{R}^3 / 3 = n^{-1} \sum_{i=1}^{N} V_i$$

^aThe average particle volume is set to the *i*th polyhedron volume of *n* particles, respectively. i=1, where *R* and *V*_i are the average spherical sizes of polyhedrons and ^bThe average coordination number $\bar{CN} = (n^{-1}\sum_{i=1}^{n}CN_{i})$, where \bar{CN}_{i} is the *i*th coordination number of *n* particles.

$$\Delta V/V = n^{-1} \sum_{i=1}^{N} |V_i - V|/V.$$

"The particle size diversity

10