
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2023

Supporting information

Inkjet-printed 3D micro-ring-electrode arrays for amperometric nanoparticle detection

Hu Peng^{a,&}, Leroy Grob^{a,&}, Lennart Jakob Konstantin Weiß^{a,&}, Lukas Hiendlmeier^a, Emir Music^a, Inola Kopic^a, Tetsuhiko Teshima^{a,b}, Philipp Rinklin^a, and Bernhard Wolfrum^{a,*}

Fig. 1 H_2SO_4 activation/cleaning cycles to clean the electrodes, which was carried out in between the detection experiments. The data corresponds to the 10^{th} cycle of the CV in 200 mM H_2SO_4 (500 mV s⁻¹ scan rate, potential -0.2 V to 1.5 V vs Ag/AgCl), where all electrodes on the chip were short-circuited.

a Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany

b Medical & Health Informatics Laboratories NTT Research Incorporated 940 Stewart Dr, Sunnyvale, CA 94085, USA

 $^{\&}amp;\ These\ authors\ contributed\ equal:\ Hu\ Peng,\ Leroy\ Grob,\ Lennart\ Jakob\ Konstantin\ Weiß$