# **Supporting Information**

Single-molecule conductance studies on quasi- and metallaaromatic dibenzoylmethane coordination compounds and their aromatic analogs

André Mang,<sup>a</sup> Nils Rotthowe,<sup>a</sup> Katawoura Beltako,<sup>b,c</sup> Michael Linseis,<sup>a</sup> Fabian Pauly\*<sup>c</sup> and Rainer F. Winter\*<sup>a</sup>

<sup>a</sup>Chemistry Department, University of Konstanz, 78457 Konstanz, Germany. E-mail: rainer.winter@uni-konstanz.de

## Materials and methods

#### Synthetic procedures

If not stated otherwise, all syntheses were carried out under inert conditions by applying standard SCHLENK techniques. The employed starting materials were purchased from commercial suppliers and used without further purification. Solvents were dried over appropriate drying agents, distilled and saturated with nitrogen prior to use.

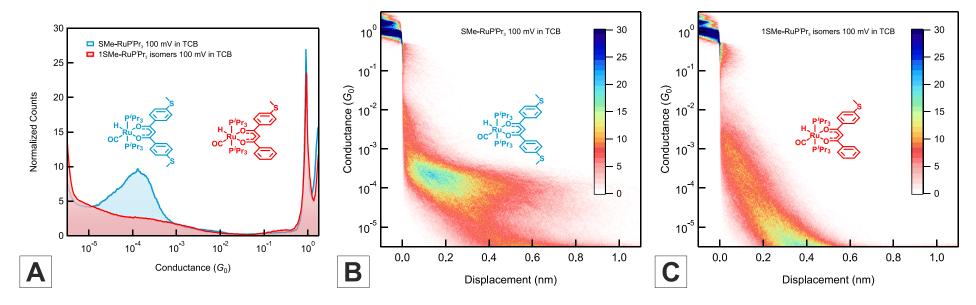
#### NMR spectroscopy

<sup>1</sup>H-, <sup>13</sup>C{<sup>1</sup>H}-, <sup>19</sup>F{<sup>1</sup>H}- and <sup>31</sup>P{<sup>1</sup>H}-NMR spectra were either recorded on a BRUKER AVANCE III 400 MHz, a BRUKER AVANCE III HD 400 MHz, a BRUKER AVANCE III 600 MHz, a BRUKER AVANCE NEO 800 MHz or a JEOL 500 MHz spectrometer applying broadband decoupling at room temperature. Data processing was performed using the MNOVA software (MESTRELAB RESEARCH). Chemical shifts are reported in ppm and were referenced to the peak of the residual protonated solvent (<sup>1</sup>H) or the solvent signal (<sup>13</sup>C{<sup>1</sup>H}) of the employed deuterated solvent, respectively. Spectral shifts in <sup>19</sup>F{<sup>1</sup>H}- and <sup>31</sup>P{<sup>1</sup>H}-NMR experiments were referenced by absolute techniques. All coupling constants are reported in Hertz (Hz). Signal assignments denoted with *H-X/H-X'* or *C-X/C-X'* correspond to resonances of both phenylene units within the dibenzoylmethane (DBM) scaffold or, in the case of **1SMe-RuP<sup>i</sup>Pr<sub>3</sub>**, resonances of two isomers within the sample.

#### X-ray diffraction analysis

Single crystals of **SMe-H**, **SMe-RhCOD**, and **SMe-RuP**<sup>*i*</sup>**Pr**<sub>3</sub> were grown by layer diffusion of *n*-pentane into dichloromethane solutions of the respective compound. Crystals of **SMe-BPh**<sup>F</sup><sub>2</sub> were obtained by slow evaporation of a *n*-heptane solution of the compound. X-ray diffraction analysis was conducted on a STOE IPDS II diffractometer equipped with a graphite-monochromated Mo-K<sub> $\alpha$ </sub> ( $\lambda$  = 0.71073 Å) or Cu-K<sub> $\alpha$ </sub> ( $\lambda$  = 1.54186 Å) radiation source and an image plate detection system at *T* = 100 K. Data processing was carried out with the X-AREA software (STOE). Structure solution was accomplished by employing

<sup>&</sup>lt;sup>b</sup>Physics Department, University of Lomé, 1515 Lomé, Togo


<sup>&</sup>lt;sup>c</sup>Institute of Physics, University of Augsburg, 86159 Augsburg, Germany. E-mail: fabian.pauly@uni-a.de

OLEX2<sup>1</sup> in combination with the SHELXT<sup>2</sup> program. Further refinement was done using the SHELXL package.<sup>3</sup> Hydrogen atoms were introduced at their calculated positions. The evaluation of the obtained CIF files was carried out with MERCURY<sup>4, 5</sup> and Oak Ridge thermal ellipsoid plots (ORTEPs) were generated with PLATON.<sup>6</sup>

#### Scanning tunneling microscope break-junction (STM-BJ) measurements

Single-molecule conductance experiments were performed using a home-built STM-BJ setup according to the model of the VENKATARAMAN group at Columbia University, New York. 7.8 The working principle of the setup corresponds to the fundamental routine for molecular junction formation in conventional STM measurements, as established by XU and TAO.9 While monitoring the current at a constant bias voltage of 100 mV, a chemically etched gold tip is brought into physical contact with a gold platelet (substrate) until a predetermined conductance threshold is exceeded. The resulting many atom-thick electrode contact is then thinned out by withdrawing the substrate at a pull rate of 20 nm/s. On substrate withdrawal, individual Au-Au bonds successively break at the narrowest part of the atomic contact, which reduces the overall contact diameter. Accordingly, a stepwise conductance decrease with plateaus near integer values of  $G_0$  ( $\triangleq 2e^2/h \triangleq 77.48 \,\mu\text{S}$ )<sup>10</sup> on increasing substrate displacement is observed. The successful formation of a break junction is indicated by a steep exponential decay of the monitored current immediately after rupture of the last single-atom contact with a conductance of around 1G<sub>0</sub>. This break-junction formation routine is repeated several thousand times with a dilute solution of the analyte (0.5-1 mM) in 1,2,4-trichlorobenzene applied to the substrate under ambient conditions. During the experiments, the created nanogaps are statistically bridged by analyte molecules, leading to corresponding molecular conductance profiles. Due to the dependence of the observed conductance on atomic details of the relevant junction configuration, a significant conductance value cannot be extracted from a single experiment. Therefore, a minimum of 4500 individual molecular conductance versus displacement traces for each of the investigated compounds was recorded and logarithmically binned into histograms to ensure the statistical relevance of the acquired data. The same experiments were also conducted on the pure solvent in order to evaluate the solvent background. To ensure the comparability of the respective single-molecule charge transport characteristics of the target compounds, the obtained conductance distributions were subsequently normalized.<sup>7,8</sup> The operation of the setup and general data processing were carried out with the IGOR PRO 8 software (WAVEMETRICS, INC.), employing customized operation and analysis implementations provided by the VENKATARAMAN group. 7,8 Data analysis was accomplished using an unmodified version of the code.

#### Additional STM-BJ measurements



**Figure S1** | (**A**) Logarithmically binned 1D conductance histogram of **SMe-RuP**<sup>*i*</sup>**Pr**<sub>3</sub> and an isomeric mixture of **1SMe-RuP**<sup>*i*</sup>**Pr**<sub>3</sub> in a 1,2,4-trichlorobenzene (TCB) solution at 100 mV bias voltage. (**B**) and (**C**) 2D conductance-displacement histograms of **SMe-RuP**<sup>*i*</sup>**Pr**<sub>3</sub> and isomeric **1SMe-RuP**<sup>*i*</sup>**Pr**<sub>3</sub>. All histograms were constructed from 5000 traces and binned without data selection.

#### Computational details

Electronic structure and contact geometries were determined within the framework of density functional theory (DFT). DFT calculations were performed, as implemented in the TURBOMOLE quantum chemistry software package.<sup>11</sup> We used the exchange-correlation functional of PERDEW, BURKE and ERNZERHOF (PBE)<sup>12, 13</sup> and the default basis set of split-valence-plus-polarization quality def-SV(P).<sup>14</sup> Total energies were converged to a precision of better than 10<sup>-6</sup> a.u., and geometries were optimized until the maximum norm of the Cartesian gradient was less than 10<sup>-5</sup> a.u. The extended central cluster<sup>15</sup> of all junction geometries studied consists of two gold pyramids, oriented in the crystallographic direction (111). On one end of the model junctions the corresponding test molecule is either attached *via* a sulfur atom to the tip atom of a Au<sub>20</sub> pyramid, which we denote as 'top' binding, or to a blunt Au<sub>19</sub> pyramid, where the tip atom is removed. We term this kind of binding as 'hollow' binding, although we find that the SMe anchor group arranges in such a way as to attach to a single Au atom on the three-atom pyramidal trunk (see Figure S2). In each case the geometry of the extended central cluster was optimized by energy minimization, while keeping the two outermost layers fixed at ideal face-centered cubic lattice positions.

Electrical transport properties were determined within the phase coherent limit using the LANDAUER-BÜTTIKER formalism. 15-17 Employing linear response theory, we express the conductance as

$$G = G_0 \int_{-\infty}^{\infty} dE \left( -\frac{\partial f}{\partial E} \right) \tau(E).$$

We evaluated the energy-dependent transmission function  $\tau(E)$  through nonequilibrium GREEN's function techniques, utilizing the DFT-based electronic structure of the static ground state geometries. At sufficiently low temperatures the electrical conductance is described by  $G = G_0 \tau(E)$ , and we used this simplified formula throughout this work to determine the conductance directly from the transmission.

In order to correct for known deficiencies of DFT, we compute electronic transmissions, besides using the pure DFT electronic structure, additionally from the DFT+ $\Sigma$  method. This correction scheme provides more accurate energy gaps of the isolated molecule and accounts for the electronic screening of the connected macroscopic, metallic gold electrodes by image charges in the junction geometries. The computationally derived Fermi energy  $E_F$  of the gold electrodes is -5.0 eV.

A comparison of energy-dependent transmission curves from DFT and DFT+ $\Sigma$  is shown in Figure S2. In the charge transport studies we constructed electrode GREEN's functions in real space, assuming periodic boundary conditions perpendicular to the transport direction and a periodicity of 42×42 lattice sites. <sup>15</sup> For DFT+ $\Sigma$ , the image charge plane was located 1.4 Å in front of the first fixed Au atomic layer of the extended central cluster, when viewed from the molecule. <sup>21</sup>

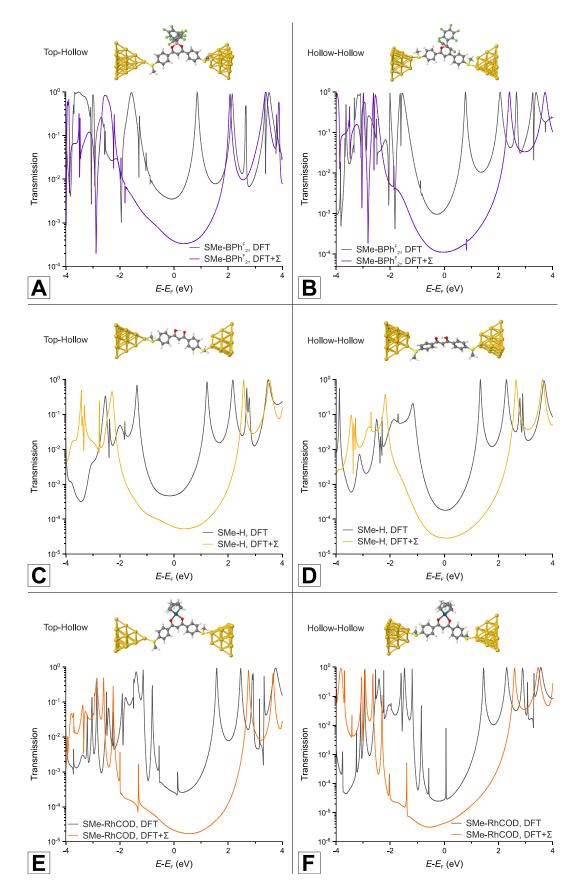



Figure S2 | Transmission of the three molecular junctions as a function of energy, obtained from DFT and DFT+ $\Sigma$  calculations, in (A, C, E) top-hollow and (B, D, F) hollow-hollow configurations. The corresponding extended central clusters of top-hollow (left column) and hollow-hollow (right column) configurations are shown above each transmission plot.

#### Conductances for top-hollow and hollow-hollow configurations

Similar to the top-top junctions, discussed in the main text, we studied top-hollow and hollow-hollow configurations by removing the tip gold atom on one or at both gold electrodes. As shown in Figure S2, the sulfur atom of the SMe anchor group was found to always connect to a single gold atom at the atomically sharp tip or the blunt three-atom trunk. Plots of the energy-dependent transmission are provided in Figure S2. The extracted conductance values are summarized in Table S1. The same ordering of conductances  $G(SMe-BPh^F_2) > G(SMe-H) > G(SMe-RhCOD)$  was found irrespective of the precise binding geometry for all three considered configurations, i.e. top-top, top-hollow and hollow-hollow.

**Table S1** | Summary of conductance values calculated with the DFT+ $\Sigma$  method for the three types of molecular junctions in top-hollow and hollow-hollow configurations.

|                               | Top-Hollow                        |                       |                       | Hollow-Hollow                     |                       |                       |  |
|-------------------------------|-----------------------------------|-----------------------|-----------------------|-----------------------------------|-----------------------|-----------------------|--|
| Compound                      | SMe-BPh <sup>F</sup> <sub>2</sub> | SMe-H                 | SMe-RhCOD             | SMe-BPh <sup>F</sup> <sub>2</sub> | SMe-H                 | SMe-RhCOD             |  |
| Conductance (G <sub>0</sub> ) | 3.79×10 <sup>-4</sup>             | 5.96×10 <sup>-5</sup> | 2.12×10 <sup>-5</sup> | 1.13×10 <sup>-4</sup>             | 2.88×10 <sup>-5</sup> | 4.32×10 <sup>-6</sup> |  |

#### **Orbitals analysis**

Figure S3 shows molecular orbitals of the three isolated molecules. For the top-top geometry presented in Figure 3 of the manuscript, transport is clearly dominated by the highest occupied molecular orbital (HOMO) or the HOMO-1 state. This remains true for the top-hollow geometries shown in Figure S2, but less so for the hollow-hollow ones. For SMe-BPhF2 and SMe-H the delocalized HOMO states are the main contributors to the transmission at  $E_{\rm F}$ . Indeed, all frontier orbitals of **SMe-H** from HOMO-1 to LUMO+1 well extend over the entire molecule. For SMe-BPh<sup>F</sup><sub>2</sub>, states that are localized mainly on the BPh<sup>F</sup><sub>2</sub> unit are found right below the HOMO, where they cause narrow FANO resonance-antiresonance features. Note also that the HOMO of SMe-BPh<sup>F</sup><sub>2</sub> exhibits a node at the boron center, similar to the transmission eigenchannel shown in panel C of Figure 3. For SMe-RhCOD, the HOMO is confined to the RhCOD fragment within the DBM binding pocket. This localized state causes the narrow FANO resonance located 1.5 to 2 eV below  $E_F$ , and charge transport hence proceeds mainly through the delocalized HOMO-1, to which the entire π-(cross-)conjugated DBM backbone and the RhCOD entity contribute. The metal states of Rh participate in conduction and open an alternative transport pathway in **SMe-RhCOD**, which results from the mixing of the rhodium  $d_{\pi}$ -orbitals with the  $p_{\pi}$ -orbitals of the ketoenolate oxygen donor atoms. Interestingly, our orbital analysis indicates the occurrence of constructive quantum interference for all the three studied molecules, as it is visible from the parities of delocalized HOMO (or HOMO-1 for SMe-RhCOD) and LUMO frontier orbital wave functions on the terminal sulfur atoms.22,23




Figure S3 | Molecular frontier orbitals of the three isolated molecules SMe-BPhF2, SMe-H, and SMe-RhCOD.

#### Calculation of the nucleus-independent chemical shift (NICS)

In order to probe for potential aromaticity in **SMe-BPh**F<sub>2</sub> and **SMe-RhCOD** as representative model compounds, a dummy centroid (i.e. a dummy atom without nuclear charge, but with the basis functions of <sup>3</sup>He),<sup>24</sup> was placed inside the central ring of the respective optimized geometries. NICS values are per definition the negative of the nuclear magnetic resonance (NMR) shielding values, which were calculated within the Gauge-Including Atomic Orbital (GIAO) method, as implemented in the TURBOMOLE quantum chemistry package.<sup>11</sup> Here, we employed the exchange-correlation functional of PERDEW, BURKE and ERNZERHOF (PBE)<sup>12, 13</sup> in combination with the default basis set of split-valence-plus-polarization quality def-SV(P).<sup>14</sup> The obtained NICS(0) values are consistent with those calculated with other auxiliary basis sets such as def2-TZVP and def2-QZVP<sup>14</sup> as well as with the results of GAUSSIAN 16 calculations,<sup>25</sup> employing the same functional and basis set combinations (see Table S2).

**Table S2** | Computed NICS(0) values for **SMe-RhCOD** and **SMe-BPh** $^{\text{F}}_{2}$ , employing the GIAO method, as implemented in TURBOMOLE.

| Compound                          |                             | NICS(0)       |               |
|-----------------------------------|-----------------------------|---------------|---------------|
| Compound                          | PBE/def-SV(P)               | PBE/def2-TZVP | PBE/def2-QZVP |
| SMe-RhCOD                         | -2.46 / -1.33 <sup>a)</sup> | -1.78         | -1.67         |
| SMe-BPh <sup>F</sup> <sub>2</sub> | +2.07 / +2.19 <sup>a)</sup> | +2.84         | +2.85         |

a) Values were calculated with GAUSSIAN 16.

#### Synthesis and Characterization

#### 3-Hydroxy-1,3-bis(4-(methylthio)phenyl)prop-2-en-1-one (SMe-H)

4-(Methylthio)acetophenone (1.27 g, 7.64 mmol, 1.0 eq) was added in small portions to a suspension of sodium hydride (60 wt% in mineral oil, 0.37 g, 9.17 mmol, 1.2 eq) in dry tetrahydrofuran (100 mL) at room temperature. The onset of the reaction was indicated by hydrogen evolution. Stirring was continued for 30 min after hydrogen gas evolution had ceased. Afterwards, ethyl 4-(methylthio)benzoate (1.50 g, 7.64 mmol, 1.0 eq) was added dropwise. The mixture was heated at reflux for 16 h. Evaporation of volatile components *in vacuo* gave an orange residue, which was extracted with ethyl acetate (50 mL) and washed with a saturated aqueous solution of ammonium chloride (50 mL). The layers were separated and the organic phase was dried over sodium sulfate, followed by the removal of the solvent under reduced pressure. Recrystallization of the crude product from ethanol afforded **SMe-H** in the form of golden-yellow crystals in 35% yield (0.86 g, 2.72 mmol).

<sup>1</sup>**H-NMR** (500 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) = 8.06 (d, <sup>3</sup> $J_{HH}$  = 8.4 Hz, 4H, H-4), 7.39 (d, <sup>3</sup> $J_{HH}$  = 8.4 Hz, 4H, H-3), 7.18 (s, 1H, H-7), 2.57 (s, 6H, H-1).

<sup>13</sup>C{<sup>1</sup>H}-NMR (126 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) = 185.9 (s, *C*-6), 146.6 (s, *C*-2), 132.5 (s, *C*-5), 128.7 (s, *C*-4), 126.1 (s, *C*-3), 93.0 (s, *C*-7), 14.7 (s, *C*-1).

#### 3-Hydroxy-1-(4-(methylthio)phenyl)-3-phenylprop-2-en-1-one (1SMe-H)

4-(Methylthio)acetophenone (2.50 g, 15.04 mmol, 1.0 eq) was added in small portions to a suspension of sodium hydride (60 wt% in mineral oil, 0.72 g, 18.00 mmol, 1.2 eq) in dry tetrahydrofuran (100 mL) at room temperature. The onset of the reaction was indicated by hydrogen evolution. Stirring was continued for 30 min after hydrogen gas evolution had ceased. Afterwards, ethyl benzoate (2.16 mL, 2.26 g, 15.04 mmol, 1.0 eq) was added dropwise. The mixture was heated at reflux for 16 h. The evaporation of all volatile components *in vacuo* gave an orange residue, which was extracted with ethyl acetate (50 mL) and washed with a saturated aqueous solution of ammonium chloride (50 mL). The layers were separated, and the organic phase was dried over sodium sulfate, followed by the removal of the solvent under reduced pressure. Recrystallization of the crude product from methanol afforded **1SMe-H** as yellow crystals in 30% yield (1.22 g, 4.51 mmol).

**1H-NMR** (400 MHz, (CD<sub>3</sub>)<sub>2</sub>CO):  $\delta$  (ppm) = 17.31 (bs, 1H, OH), 8.17-8.06 (m, 4H, H-4+H-10), 7.61-7.48 (m, 3H, H-11+H-12), 7.40 (d,  ${}^{3}J_{HH}$  = 8.6 Hz, 2H, H-3), 7.22 (s, 1H, H-7), 2.57 (s, 3H, H-1).

#### (1,3-Bis(4-methylthiophenyl)propane-1,3-diketonato)boron difluoride (SMe-BF<sub>2</sub>)

Boron trifluoride diethyl etherate (30 µL, 33.6 mg, 237 µmol, 1.5 eq) was added to a solution of **SMe-H** (50 mg, 158 µmol, 1.0 eq) in dry dichloromethane (10 mL) and the mixture was stirred at room temperature for 16 h. The luminescent solution was evaporated to dryness, and the solid residue was extracted with a mixture of acetone and n-heptane (40 mL, 1:1 v/v). The solution was concentrated under reduced pressure, which caused the precipitation of a fine powder. The crude product was collected by filtration and washed with n-heptane (2 × 20 mL). Recrystallization from a mixture of acetone and *n*-heptane (1:1 v/v) gave **SMe-BF**<sub>2</sub> in the form of ochre crystals in 72% yield (41.5 mg, 114 µmol).

<sup>1</sup>**H-NMR** (600 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) = 8.03 (d, <sup>3</sup> $J_{HH}$  = 8.5 Hz, 4H, H-4), 7.33 (d, <sup>3</sup> $J_{HH}$  = 8.5 Hz, 4H, H-3), 7.07 (s, 1H, *H*-7), 2.57 (s, 6H, *H*-1).

<sup>13</sup>C{<sup>1</sup>H}-NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) = 181.4 (s, C-6), 149.7 (s, C-2), 129.2 (s, C-4), 128.0 (s, C-5), 125.3 (s, C-3), 92.4 (s, C-7), 14.8 (s, C-1).

<sup>19</sup>**F**{<sup>1</sup>**H**}-**NMR** (376 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) = -140.51 (s, <sup>10</sup>B $F_2$ ), -140.57 (s, <sup>11</sup>B $F_2$ ).

#### Bis(pentafluorophenyl)boron-1,3-bis(4-(methylthio)phenyl)propane-1,3-diketonate (SMe-BPhF<sub>2</sub>)

SMe-BPh<sup>F</sup>,

Tris(pentafluorophenyl)borane (150 mg, 293 µmol, 1 eq) was added to a solution of **SMe-H** (92.7 mg, 293 µmol, 1 eq) in dry toluene (70 mL), and the reaction mixture was stirred at room temperature for 16 h. The resulting luminescent solution was evaporated to dryness. The solid residue was repeatedly crystallized from *n*-heptane, affording **SMe-BPh<sup>F</sup><sub>2</sub>** as orange crystals in 41% yield (80 mg, 121 µmol).

<sup>1</sup>**H-NMR** (600 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) = 8.06 (d, <sup>3</sup> $J_{HH}$  = 8.6 Hz, 4H, H-4), 7.35 (d, <sup>3</sup> $J_{HH}$  = 8.6 Hz, 4H, H-3), 7.01 (s, 1H, H-7), 2.57 (s, 6H, H-1).

<sup>13</sup>C{<sup>1</sup>H}-NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) = 181.2 (s, *C*-6), 150.1 (s, *C*-2), 148.3 (dm, <sup>1</sup> $J_{CF}$  = 243.4 Hz, *C*-9/*C*-10), 140.4 (dm, <sup>1</sup> $J_{CF}$  = 250.5 Hz, *C*-11), 137.2 (dm, <sup>1</sup> $J_{CF}$  = 249.7 Hz, *C*-9/*C*-10), 129.4 (s, *C*-4), 128.0 (s, *C*-5), 125.3 (s, *C*-3), 117.0-115.6 (m, *C*-8), 92.8 (s, *C*-7), 14.8 (s, *C*-1).

<sup>19</sup>**F**{<sup>1</sup>**H**}-**NMR** (753 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) = -135.82 to -135.97 (m, *F*-9/*F*-10), -156.95 (t, <sup>3</sup>*J*<sub>FF</sub> = 20.2 Hz, *F*-11), -163.73 to -163.87 (m, *F*-9/*F*-10).

# (1,3-Bis(4-methylthiophenyl)propane-1,3-diketonato)(1,5-cyclooctadiene)rhodium(I) (SMe-RhCOD)

An aqueous solution of potassium hydroxide (68 mg, 1218  $\mu$ mol, 2.5 eq) in deionized water (20 mL) was added to a solution of **SMe-H** (154 mg, 487  $\mu$ mol, 1.0 eq) in diethyl ether (30 mL) under ambient conditions. A solution of the chloro(1,5-cyclooctadiene)rhodium(I) dimer (120 mg, 243  $\mu$ mol, 0.5 eq) in diethyl ether (20 mL) was added to the biphasic mixture and the reaction mixture was stirred at room temperature for 16 h. The layers were separated, the organic phase was washed with deionized water (3 × 10 mL), dried over sodium sulfate, and the volatiles were removed under reduced pressure. Recrystallization of the crude product from *n*-heptane furnished **SMe-RhCOD** in form of yellow acicular crystals in 83% yield (213 mg, 405  $\mu$ mol).

<sup>1</sup>**H-NMR** (600 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) = 7.75 (d, <sup>3</sup> $J_{HH}$  = 8.4 Hz, 4H, H-4), 7.21 (d, <sup>3</sup> $J_{HH}$  = 8.4 Hz, 4H, H-3), 6.59 (s, 1H, H-7), 4.28-4.22 (m, 4H, H-8), 2.56-2.51 (m, 4H, H-9), 2.50 (s, 6H, H-1), 1.95-1.86 (m, 4H, H-10).

<sup>13</sup>C{<sup>1</sup>H}-NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) = 180.5 (s, *C*-6), 142.6 (s, *C*-2), 136.1 (s, *C*-5), 127.8 (s, *C*-4), 125.4 (s, *C*-3), 93.2 (s, *C*-7), 77.1 (d, <sup>1</sup> $J_{CRh}$  = 14.1 Hz, *C*-8), 30.5 (s, *C*-9, *C*-10), 15.3 (s, *C*-1).

Carbonylhydrido(1,3-bis(4-methylthiophenyl)propane-1,3-diketonato)bis(triisopropylphosphane)ruthenium(II) (SMe-RuP<sup>i</sup>Pr<sub>3</sub>)

Carbonylchlorohydridobis(triisopropylphosphane)ruthenium(II) (HRu(CO)Cl( $P^iPr_3$ )<sub>2</sub>, 76.8 mg, 158 µmol, 1 eq) was added to a suspension of **SMe-H** (50.0 mg, 158 µmol, 1 eq) and potassium carbonate (109.2 mg, 790 µmol, 5 eq) in a solvent mixture of dry dichloromethane (5 mL) and methanol (3 mL). The reaction mixture was stirred at room temperature for 16 h, and the liquid layer was decanted after centrifugation. The red precipitate was dissolved in dichloromethane (5 mL) and insoluble contaminants were filtered off. The filtrate was evaporated to dryness and the crude product was washed with methanol (3 × 5 mL). Drying *in vacuo* furnished **SMe-RuP** $^i$ **Pr** $_3$  as a red powder in 74% yield (89.6 mg, 117 µmol).

<sup>1</sup>**H-NMR** (600 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  (ppm) = 7.85 (d,  ${}^{3}J_{HH}$  = 8.4 Hz, 2H, H-4/H-4'), 7.78 (d,  ${}^{3}J_{HH}$  = 8.4 Hz, 2H H-4/H-4'), 7.24 (d,  ${}^{3}J_{HH}$  = 8.4 Hz, 2H, H-3/H-3'), 7.20 (d,  ${}^{3}J_{HH}$  = 8.4 Hz, 2H, H-3/H-3'), 6.56 (s, 1H, H-7), 2.52 (s, 3H, H-1/H-1'), 2.50 (s, 3H, H-1/H-1'), 2.26-2.17 (m, 6H, H-8), 1.32 (vq, 18H, J = 6.6 Hz, H-9/H-9'), 1.19 (vq, J = 6.6 Hz, 18H, H-9/H-9'), -15.07 (t,  ${}^{2}J_{HP}$  = 19.6 Hz, 1H, H-Ru).

<sup>13</sup>C{<sup>1</sup>H}-NMR (151 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  (ppm) = 208.7 (t, <sup>2</sup>J<sub>CP</sub> = 14.7 Hz, C-10), 182.6 (s, C-6/C-6'), 179.5 (s, C-6/C-6'), 141.8 (s, C-2/C-2'), 141.7 (s, C-2/C-2'), 138.5 (s, C-5/C-5'), 138.0 (s, C-5/C-5'), 127.8 (s, C-4/C-4'), 127.7 (s, C-4/C-4'), 125.6 (s, C-3/C-3'), 125.5 (s, C-3/C-3'), 92.8 (s, C-7), 25.2 (t, <sup>1</sup>J<sub>CP</sub> = 9.3 Hz, C-8), 20.2 (s, C-9/C-9'), 19.6 (s, C-9/C-9'), 15.5 (s, C-1/C-1'), 15.5 (s, C-1/C-1').

Signal assignments denoted with 'correspond to H/C atoms at the opposite phenylene unit of the dibenzoylmethane moiety or magnetically different tri<sup>iso</sup>propylphosphine ligands.

<sup>31</sup>**P**{<sup>1</sup>**H**}**-NMR** (243 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  (ppm) = 55.70-54.60 (m,  $P^i$ Pr<sub>3</sub>).

Carbonylhydrido(1-(4-methylthiophenyl)-3-phenylpropane-1,3-diketonato)bis(triisopropylphosphane)ruthenium(II) (SMe-Ru $P^{i}$ Pr<sub>3</sub>)

Carbonylchlorohydridobis(triisopropylphosphane)ruthenium(II) (HRu(CO)Cl( $P^iPr_3$ )<sub>2</sub>, 180.0 mg, 0.37 mmol, 1 eq) was added to a suspension of **1SMe-H** (100.0 mg, 0.37 µmol, 1 eq) and potassium carbonate (256.0 mg, 1.85 mmol, 5 eq) in a solvent mixture of dry dichloromethane (10 mL) and methanol (5 mL). The reaction mixture was stirred at room temperature for 16 h. The liquid layer was decanted, and the solvent was removed under reduced pressure. The orange residue was dissolved in dichloromethane (5 mL), and insoluble contaminants were filtered off. The filtrate was evaporated to dryness, and the crude product was washed with methanol (5 × 5 mL). Drying *in vacuo* furnished **1SMe-RuP** $^i$ Pr<sub>3</sub> as an orange powder in 67% yield (184.0 mg, 0.25 mmol).

The title compound was obtained in an isomeric mixture with 1SMe\*-RuP'Pr<sub>3</sub>.

<sup>1</sup>**H-NMR** (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  (ppm) = 7.93-7.76 (m, 4H, *H-4/H-4*'+*H-*10/*H-*10'), 7.46-7.31 (m, 3H, *H-*11/*H-*11'+*H-*12/*H-*12'), 7.28-7.16 (m, 2H, *H-*3/*H-*3'), 6.59 (bs, 1H, *H-*7/*H-*7'), 2.53-2.49 (m, 3H, *H-*1/*H-*1'), 2.31-2.15 (m, 6H, *H-*13/*H-*13'), 1.38-1.27 (m, 18H, *H-*14/*H-*14'), 1.25-1.14 (m, 18H, *H-*14/*H-*14'), -15.00 to -15.15 (m, 1H, *H-*Ru/*H-*Ru').

<sup>13</sup>C{<sup>1</sup>H}-NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  (ppm) = 208.9-208.4 (m, *C*-15/ *C*-15′), 183.6 (s, *C*-8/*C*-8′), 182.9 (s, *C*-8/*C*-8′), 180.4 (s, *C*-6/*C*-6′), 179.7 (s, *C*-6/*C*-6′), 142.2 (s, *C*-9/*C*-9′), 141.9-141.8 (m, *C*-2/*C*-2′), 141.7 (s, *C*-9/*C*-9′), 138.5 (s, *C*-5/*C*-5′), 138.0 (s, *C*-5/*C*-5′), 130.4-130.3 (m, *C*-12/*C*-12′), 128.7-128.4 (m, *C*-11/*C*-11′), 127.9-127.6 (m, *C*-4/*C*-4′), 127.4-127.1 (m, *C*-10/*C*-10′), 125.8-125.4 (m, *C*-3/*C*-3′), 93.4 (bs, *C*-7/*C*-7′), 25.4-25.0 (m, *C*-13/*C*-13′), 20.2 (bs, *C*-14/*C*-14′), 19.7-19.5 (m, *C*-14/*C*-14′), 15.6-15.4 (m, *C*-1/*C*-1′).

<sup>31</sup>**P**{<sup>1</sup>**H**}-**NMR** (162 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  (ppm) = 54.64 (s,  $P^i$ Pr<sub>3</sub>/ $P^i$ Pr<sub>3</sub>'), 54.61 (s,  $P^i$ Pr<sub>3</sub>').

Signal assignments denoted with 'correspond to H/C atoms at the opposite phenylene unit of the dibenzoylmethane moiety, magnetically different tri<sup>iso</sup>propylphosphine ligands and different isomers.

#### 4,6-Bis(4-(methylthio)phenyl)benzene (SMe-TerPh)

A suspension of 1,3-diiodobenzene (247 mg, 0.75 mmol, 1.0 eg), 4-methylthiophenylboronic acid (504 mg, 3.00 mmol, 4 eq) and K<sub>3</sub>PO<sub>4</sub> (796 mg, 3.75 mmol, 5 eq) in 1,4-dioxane (60 mL) was thoroughly degassed and subsequently saturated with nitrogen. Catalytic amounts [1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloride (55 mg, 75 µmol, 0.1 eq) were added, and the mixture was stirred at 70 °C for 16 h. The volatiles were removed under reduced pressure and the black residue was extracted with toluene (50 mL). Insoluble contaminants were removed via filtration over Celite, and the filtrate was consecutively washed with an aqueous solution of sodium hydroxide (1 M, 2 × 50 mL) and deionized water (2 × 50 mL). The organic layer was dried over sodium sulfate and evaporated to dryness. Successive recrystallization of the crude product from *n*-heptane and methanol gave **SMe-TerPh** in the form of a solid with a silverish shine in 16% yield (40 mg, 124 µmol).

<sup>1</sup>**H-NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) = 7.75 (t, <sup>4</sup> $J_{HH}$  = 1.5 Hz, 1H, H-6), 7.57 (d, <sup>3</sup> $J_{HH}$  = 8.5 Hz, 4H, H-3), 7.55-7.46 (m, 3H, H-4, H-5), 7.35 (d, <sup>3</sup> $J_{HH}$  = 8.5 Hz, 4H, H-2), 2.54 (s, 6H, H-1).

#### 4,6-Bis(4-(methylthio)phenyl)pyrimidine (SMe-TerY)

A suspension of 4,6-dichloropyrimidine (100 mg, 0.67 mmol, 1.0 eq), 4-methylthiophenylboronic acid (282 mg, 1.68 mmol, 2.5 eq) and  $K_3PO_4$  (711 mg, 3.35 mmol, 5.0 eq) in 1,4-dioxane (20 mL) was thoroughly degassed and subsequently saturated with nitrogen. Catalytic amounts of [1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloride (49 mg, 67 µmol, 0.1 eq) were added, and the reaction mixture was stirred at 80 °C for 24 h. The volatiles were removed under reduced pressure, and the black residue was extracted with dichloromethane (50 mL). Insoluble contaminants were removed *via* filtration over Celite, and the filtrate was washed with deionized water (2 × 40 mL). The organic layer was dried over magnesium sulfate, and the solvent was evaporated *in vacuo*. Purification of the crude product by column chromatography over silica gel (ethyl acetate/dichloromethane, 1:4 v/v) and subsequent recrystallization from n-heptane furnished **SMe-TerY** as pale yellow needles in 34% yield (74 mg, 228 µmol).

<sup>1</sup>**H-NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) = 9.25 (s, 1H, *H*-4), 8.08 (d, <sup>3</sup>*J*<sub>HH</sub> = 8.2 Hz, 4H, *H*-3), 8.03 (s, 1H, *H*-5), 7.38 (d, <sup>3</sup>*J*<sub>HH</sub> = 8.2 Hz, 4H, *H*-2), 2.56 (s, 6H, *H*-1).

|  | 44 |  |
|--|----|--|

# NMR spectra

# SMe-H

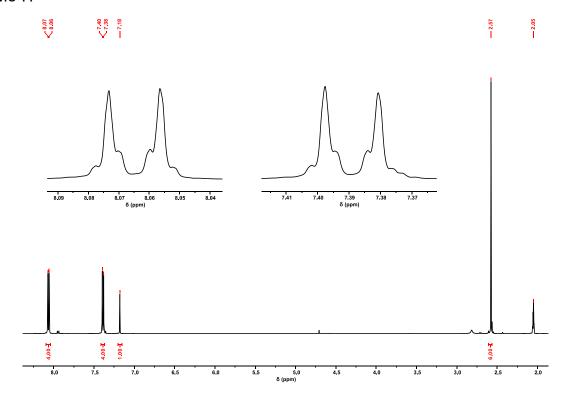



Figure S4 |  $^{1}\text{H-NMR}$  (500 MHz, (CD<sub>3</sub>)<sub>2</sub>CO), rt) spectrum of SMe-H.

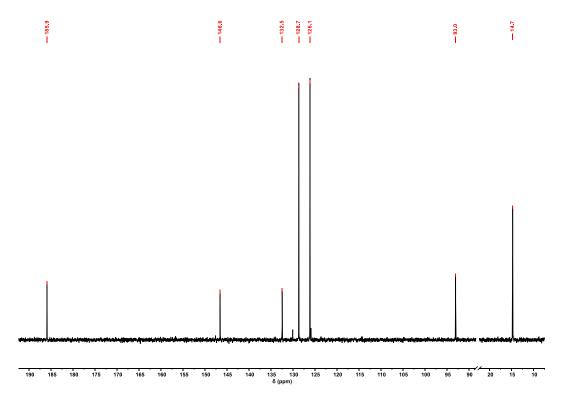



Figure S5 |  $^{13}$ C{ $^{1}$ H}-NMR (126 MHz, (CD<sub>3</sub>)<sub>2</sub>CO, rt) spectrum of SMe-H.



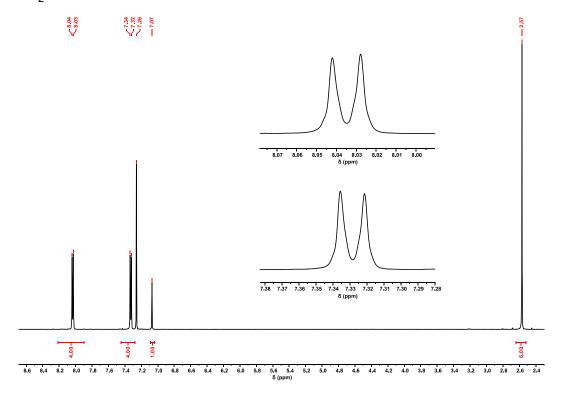



Figure S6 |  $^1\text{H-NMR}$  (600 MHz, CDCl $_3$ , rt) spectrum of SMe-BF $_2$ .

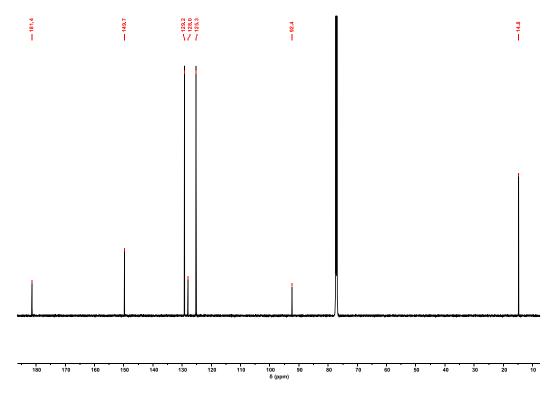
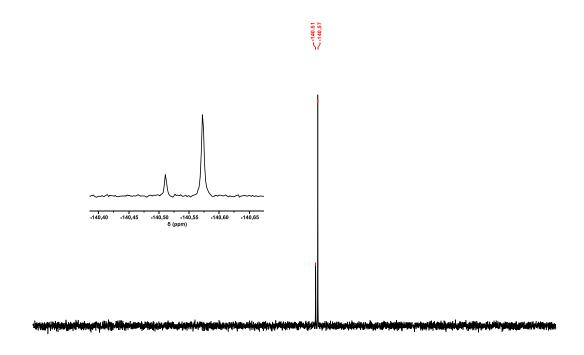
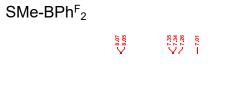





Figure S7 |  $^{13}$ C $\{^{1}$ H $\}$ -NMR (151 MHz, CDCl $_{3}$ , rt) spectrum of SMe-BF $_{2}$ .



-132.5 -133.0 -133.5 -134.0 -134.5 -135.0 -135.5 -136.0 -136.5 -137.0 -137.5 -138.0 -138.5 -139.0 -139.5 -140.0 -140.5 -141.0 -141.5 -142.0 -142.5 -143.0 -143.5 -144.0 -144.5 -145.0 -145.5 -146.0 -146.5 -147.0 -140.5 -141.0 -141.5 -142.0 -142.5 -143.0 -143.5 -144.0 -144.5 -145.0 -145.5 -146.0 -146.5 -147.0 -140.5 -141.0 -141.5 -142.0 -142.5 -143.0 -143.5 -144.0 -144.5 -145.0 -145.5 -146.0 -146.5 -147.0 -140.5 -141.0 -141.5 -142.0 -142.5 -143.0 -143.5 -144.0 -144.5 -145.0 -145.5 -146.0 -146.5 -147.0 -140.5 -141.0 -141.5 -142.0 -142.5 -143.0 -143.5 -144.0 -144.5 -145.0 -145.5 -146.0 -146.5 -147.0 -140.5 -141.0 -141.5 -142.0 -142.5 -143.0 -143.5 -144.0 -144.5 -145.0 -145.5 -146.0 -146.5 -147.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.5 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -140.0 -1

Figure S8 | <sup>19</sup>F{<sup>1</sup>H}-NMR (376 MHz, CDCl<sub>3</sub>, rt) spectrum of SMe-BF<sub>2</sub>.



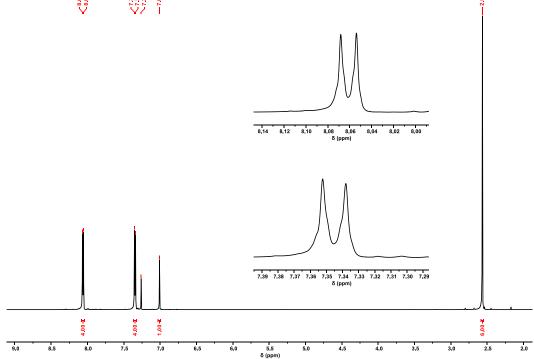



Figure S9 | <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>, rt) spectrum of SMe-BPh<sup>F</sup><sub>2</sub>.

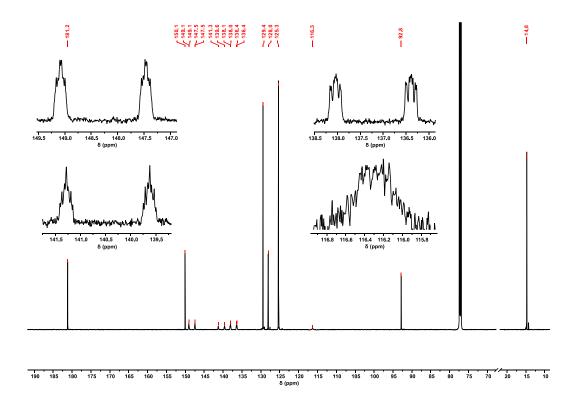



Figure S10 | <sup>13</sup>C{<sup>1</sup>H}-NMR (151 MHz, CDCl<sub>3</sub>, rt) spectrum of SMe-BPh<sup>F</sup><sub>2</sub>.

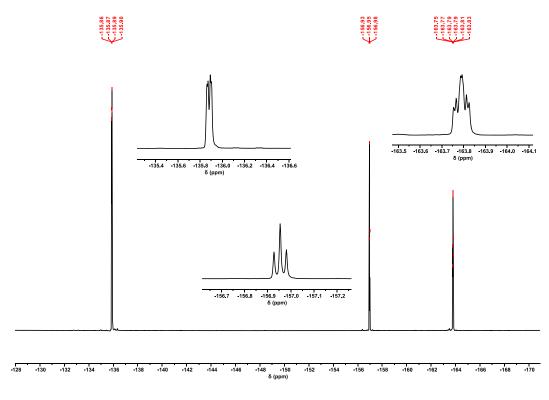



Figure S11 |  $^{19}F\{^1H\}$ -NMR (753 MHz, CDCl<sub>3</sub>, rt) spectrum of SMe-BPh<sup>F</sup><sub>2</sub>.

# SMe-RhCOD

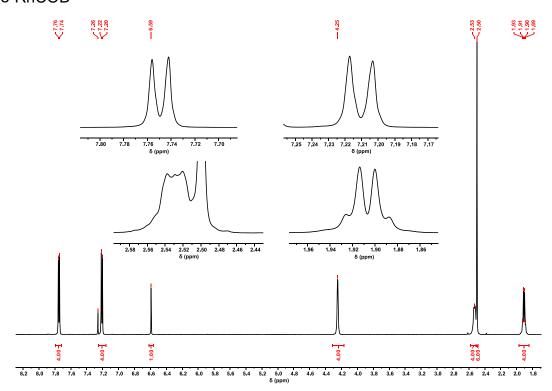



Figure S12 | <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>, rt) spectrum of SMe-RhCOD.

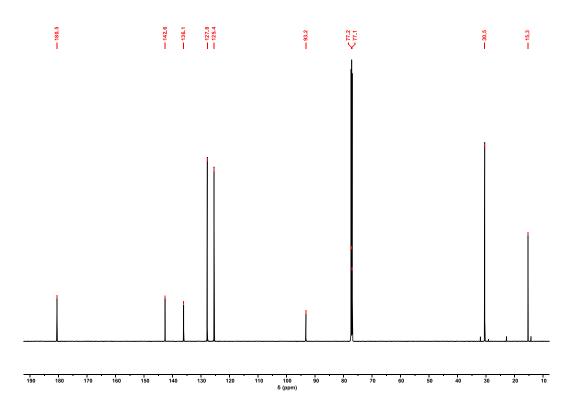



Figure S13 |  $^{13}$ C $\{^{1}$ H $\}$ -NMR (151 MHz, CDCl $_{3}$ , rt) spectrum of SMe-RhCOD.

# SMe-RuP<sup>i</sup>Pr<sub>3</sub>

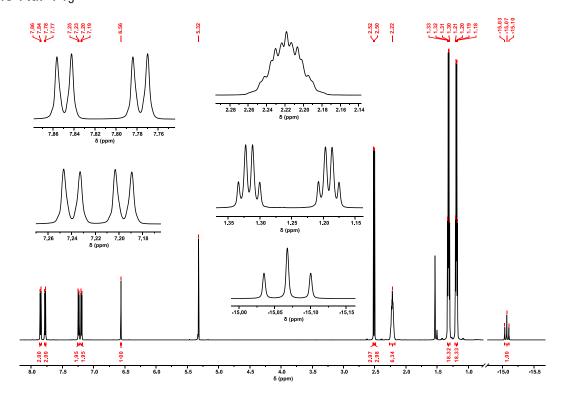



Figure S14 | <sup>1</sup>H-NMR (600 MHz, CD<sub>2</sub>Cl<sub>2</sub>, rt) spectrum of SMe-RuP'Pr<sub>3</sub>.

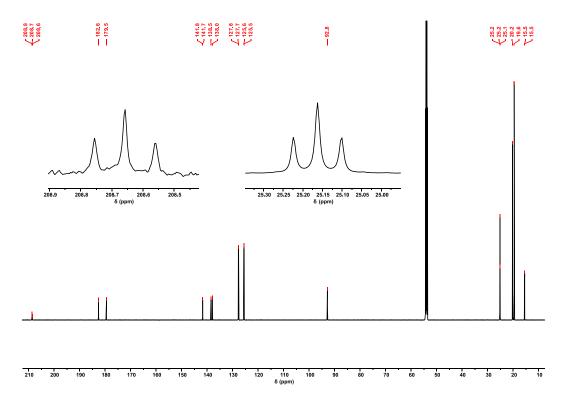



Figure S15 |  $^{13}$ C{ $^{1}$ H}-NMR (151 MHz, CD $_{2}$ Cl $_{2}$ , rt) spectrum of SMe-RuP $^{\prime}$ Pr $_{3}$ .

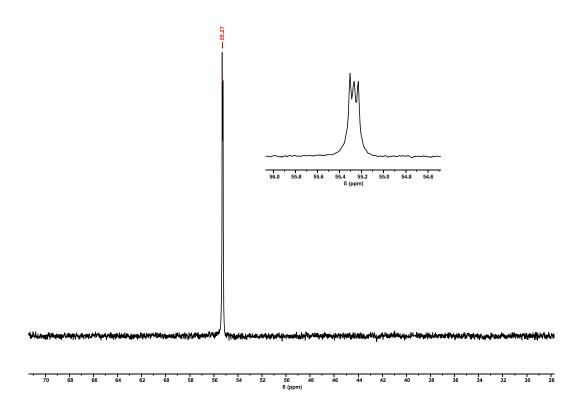
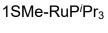




Figure S16 |  $^{31}P\{^{1}H\}$ -NMR (243 MHz, CD<sub>2</sub>Cl<sub>2</sub>, rt) spectrum of SMe-RuP<sup>i</sup>Pr<sub>3</sub>.



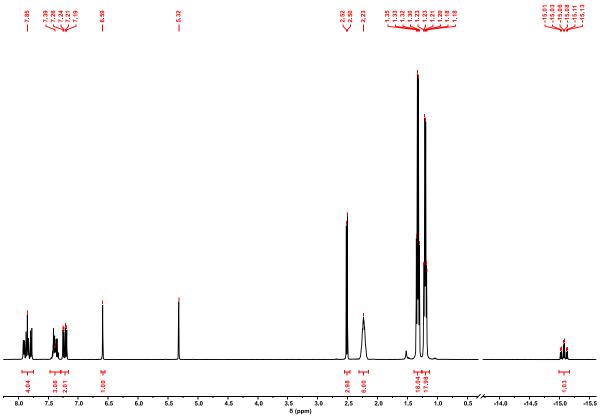



Figure S17 |  $^1\text{H-NMR}$  (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, rt) spectrum of 1SMe-RuP $^i$ Pr<sub>3</sub>.

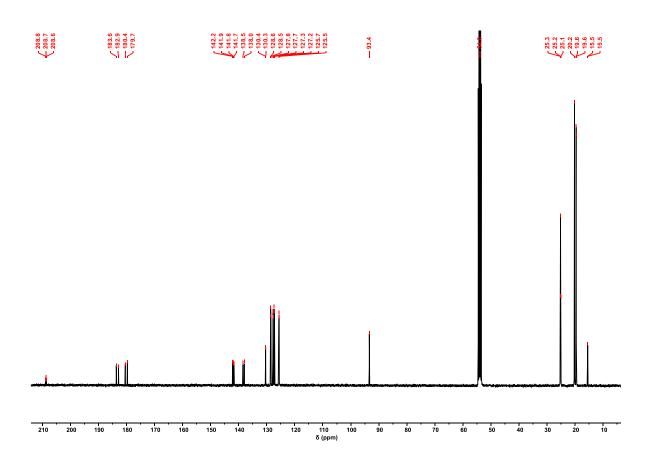



Figure S18 |  $^{13}$ C{ $^{1}$ H}-NMR (101 MHz, CD $_{2}$ CI $_{2}$ , rt) spectrum of 1SMe-RuP $^{\prime}$ Pr $_{3}$ .

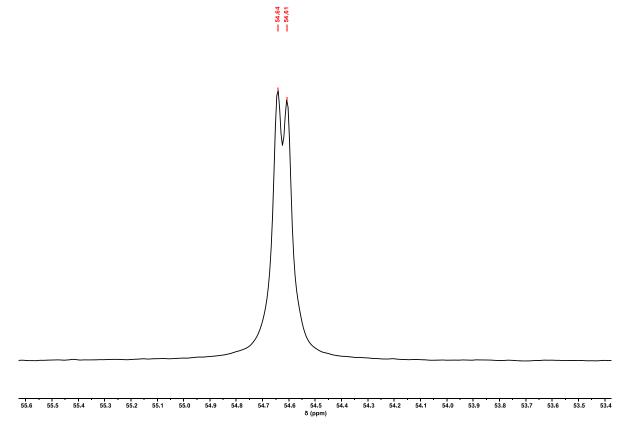



Figure S19 |  $^{31}P\{^{1}H\}$ -NMR (162 MHz, CD<sub>2</sub>Cl<sub>2</sub>, rt) spectrum of 1SMe-RuP<sup>i</sup>Pr<sub>3</sub>

## SMe-TerPh

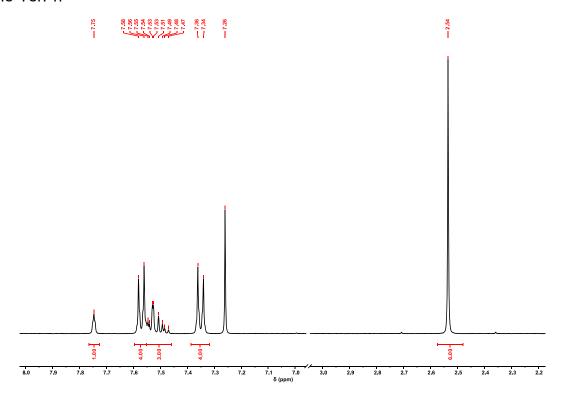



Figure S20 |  $^1\text{H-NMR}$  (400 MHz, CDCl $_3$ , rt) spectrum of SMe-TerPh.

# SMe-TerY

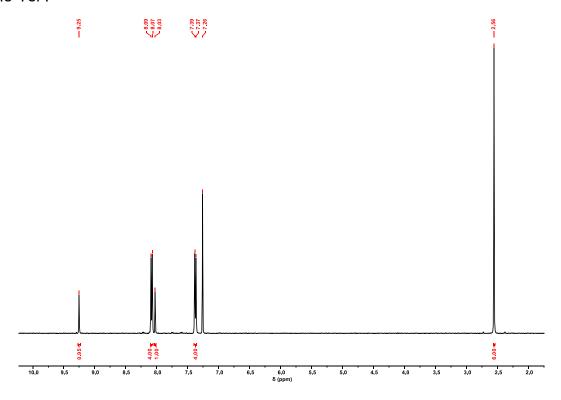
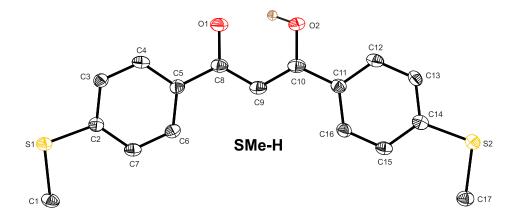




Figure S21 | <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>, rt) spectrum of SMe-TerY.

# Single crystal X-ray diffraction

#### SMe-H

Single crystals of **SMe-H** were grown by layer diffusion of *n*-pentane into a dichloromethane solution of the compound. The obtained crystallographic information file was submitted to the structural database of The Cambridge Crystallographic Data Centre and can be found under the deposition number CCDC 2161698.



**Figure S22** | ORTEP of the free ligand **SMe-H**. Thermal ellipsoids are displayed at a 50% probability level. Hydrogen atoms (except for OH) are omitted for clarity reasons.

Table S3 | Crystal data and structure refinement for SMe-H.

| Parameter                           | SMe-H                                                      |  |  |  |  |
|-------------------------------------|------------------------------------------------------------|--|--|--|--|
| Empirical formula                   | $C_{17}H_{16}O_2S_2$                                       |  |  |  |  |
| Formula weight                      | 316.42                                                     |  |  |  |  |
| Temperature (K)                     | 100                                                        |  |  |  |  |
| Crystal system                      | orthorhombic                                               |  |  |  |  |
| Space group                         | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub>              |  |  |  |  |
| a (Å)                               | 3.9473(2)                                                  |  |  |  |  |
| b (Å)                               | 11.3841(5)                                                 |  |  |  |  |
| c (Å)                               | 32.7877(16)                                                |  |  |  |  |
| α (°)                               | 90                                                         |  |  |  |  |
| β (°)                               | 90                                                         |  |  |  |  |
| γ (°)                               | 90                                                         |  |  |  |  |
| Volume (ų)                          | 1473.36(12)                                                |  |  |  |  |
| Z                                   | 4                                                          |  |  |  |  |
| $ ho_{ m calc}$ (g/cm $^3$ )        | 1.426                                                      |  |  |  |  |
| $\mu$ (mm <sup>-1</sup> )           | 0.362                                                      |  |  |  |  |
| F(000)                              | 664.0                                                      |  |  |  |  |
| Crystal size (mm³)                  | 0.1 × 0.1 × 0.1                                            |  |  |  |  |
| Radiation                           | Mo- $K_{\alpha}$ ( $\lambda = 0.71073 \text{ Å}$ )         |  |  |  |  |
| 2Θ range for data collection (°)    | 5.166 to 55.074                                            |  |  |  |  |
| Index ranges                        | $-5 \le h \le 5$ , $-12 \le k \le 14$ , $-35 \le l \le 42$ |  |  |  |  |
| Reflections collected               | 7146                                                       |  |  |  |  |
| Independent reflections             | 3334 [ $R_{int} = 0.0291$ , $R_{sigma} = 0.0323$ ]         |  |  |  |  |
| Data/restraints/parameters          | 3334/0/194                                                 |  |  |  |  |
| Goodness-of-fit on F2               | 1.118                                                      |  |  |  |  |
| Final <i>R</i> indexes [/ ≥ 2σ (/)] | $R_1 = 0.0395$ , w $R_2 = 0.0931$                          |  |  |  |  |
| Final R indexes [all data]          | $R_1 = 0.0521$ , $wR_2 = 0.1134$                           |  |  |  |  |
| Largest diff. peak/hole (e Å-³)     | 0.35/-0.37                                                 |  |  |  |  |
| Flack parameter                     | -0.03(6)                                                   |  |  |  |  |

Table S4 | Bond lengths for SMe-H.

| Atom | Atom | Length (Å) | Atom | Atom | Length (Å) |
|------|------|------------|------|------|------------|
| S1   | C1   | 1.792(4)   | C5   | C8   | 1.483(5)   |
| S1   | C2   | 1.750(4)   | C6   | C7   | 1.384(5)   |
| S2   | C14  | 1.754(4)   | C8   | C9   | 1.401(6)   |
| S2   | C17  | 1.797(4)   | C9   | C10  | 1.389(6)   |
| 01   | C8   | 1.284(5)   | C10  | C11  | 1.462(6)   |
| O2   | C10  | 1.313(5)   | C11  | C12  | 1.401(5)   |
| C2   | C3   | 1.395(5)   | C11  | C16  | 1.396(5)   |
| C2   | C7   | 1.398(5)   | C12  | C13  | 1.377(6)   |
| C3   | C4   | 1.386(5)   | C13  | C14  | 1.395(5)   |
| C4   | C5   | 1.382(5)   | C14  | C15  | 1.400(5)   |
| C5   | C6   | 1.399(5)   | C15  | C16  | 1.379(6)   |

Table S5 | Bond angles for SMe-H.

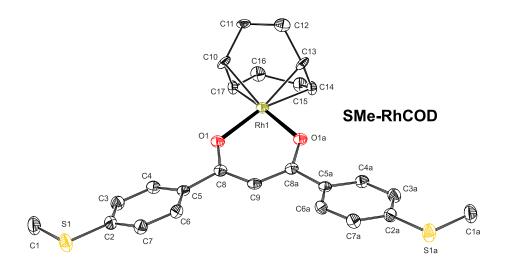

| Atom | Atom | Atom | Angle (°)  | Atom | Atom | Atom | Angle (°) |
|------|------|------|------------|------|------|------|-----------|
| C2   | S1   | C1   | 103.61(19) | C10  | C9   | C8   | 120.8(4)  |
| C14  | S2   | C17  | 103.04(19) | O2   | C10  | C9   | 119.6(4)  |
| C3   | C2   | S1   | 116.2(3)   | O2   | C10  | C11  | 115.5(3)  |
| C3   | C2   | C7   | 118.5(4)   | C9   | C10  | C11  | 124.9(4)  |
| C7   | C2   | S1   | 125.3(3)   | C12  | C11  | C10  | 119.4(4)  |
| C4   | C3   | C2   | 120.3(4)   | C16  | C11  | C10  | 122.6(3)  |
| C5   | C4   | C3   | 121.5(3)   | C16  | C11  | C12  | 118.0(4)  |
| C4   | C5   | C6   | 118.1(4)   | C13  | C12  | C11  | 121.0(4)  |
| C4   | C5   | C8   | 119.2(3)   | C12  | C13  | C14  | 120.7(3)  |
| C6   | C5   | C8   | 122.7(3)   | C13  | C14  | S2   | 117.2(3)  |
| C7   | C6   | C5   | 120.9(4)   | C13  | C14  | C15  | 118.7(4)  |
| C6   | C7   | C2   | 120.5(4)   | C15  | C14  | S2   | 124.2(3)  |
| 01   | C8   | C5   | 116.2(4)   | C16  | C15  | C14  | 120.3(4)  |
| 01   | C8   | C9   | 120.3(4)   | C15  | C16  | C11  | 121.3(4)  |
| C9   | C8   | C5   | 123.5(3)   |      |      |      |           |

Table S6 | Torsion angles for SMe-H.

| Atom | Atom | Atom | Atom | Angle (°) | Atom | Atom | Atom | Atom | Angle (°) |
|------|------|------|------|-----------|------|------|------|------|-----------|
| S1   | C2   | C3   | C4   | 178.5(3)  | C6   | C5   | C8   | C9   | -4.3(6)   |
| S1   | C2   | C7   | C6   | -177.9(3) | C7   | C2   | C3   | C4   | -0.6(6)   |
| S2   | C14  | C15  | C16  | -179.5(3) | C8   | C5   | C6   | C7   | 177.6(4)  |
| 01   | C8   | C9   | C10  | 2.9(6)    | C8   | C9   | C10  | O2   | -1.3(6)   |
| O2   | C10  | C11  | C12  | -2.0(5)   | C8   | C9   | C10  | C11  | 179.1(4)  |
| O2   | C10  | C11  | C16  | 179.4(4)  | C9   | C10  | C11  | C12  | 177.5(4)  |
| C1   | S1   | C2   | C3   | 177.0(3)  | C9   | C10  | C11  | C16  | -1.0(6)   |
| C1   | S1   | C2   | C7   | -3.9(4)   | C10  | C11  | C12  | C13  | -177.2(4) |
| C2   | C3   | C4   | C5   | -0.9(6)   | C10  | C11  | C16  | C15  | 177.3(4)  |
| C3   | C2   | C7   | C6   | 1.1(6)    | C11  | C12  | C13  | C14  | -0.2(6)   |
| C3   | C4   | C5   | C6   | 2.0(6)    | C12  | C11  | C16  | C15  | -1.2(6)   |
| C3   | C4   | C5   | C8   | -177.1(4) | C12  | C13  | C14  | S2   | 179.6(3)  |
| C4   | C5   | C6   | C7   | -1.4(6)   | C12  | C13  | C14  | C15  | -1.2(6)   |
| C4   | C5   | C8   | 01   | -4.1(6)   | C13  | C14  | C15  | C16  | 1.4(6)    |
| C4   | C5   | C8   | C9   | 174.7(4)  | C14  | C15  | C16  | C11  | -0.2(6)   |
| C5   | C6   | C7   | C2   | -0.1(6)   | C16  | C11  | C12  | C13  | 1.4(6)    |
| C5   | C8   | C9   | C10  | -175.9(4) | C17  | S2   | C14  | C13  | -177.1(3) |
| C6   | C5   | C8   | O1   | 176.9(4)  | C17  | S2   | C14  | C15  | 3.7(4)    |

#### SMe-RhCOD

Single crystals of **SMe-RhCOD** were grown by layer diffusion of *n*-pentane into a dichloromethane solution of the compound. The obtained crystallographic information file was submitted to the structural database of The Cambridge Crystallographic Data Centre and can be found under the deposition number CCDC 2161700.



**Figure S23** | ORTEP of the DBM based transition metal complex **SMe-RhCOD**. Thermal ellipsoids are displayed at a 50% probability level. Hydrogen atoms, co-crystallized solvent molecules and one part of the COD disorder are omitted for clarity reasons.

Table S7 | Crystal data and structure refinement for SMe-RhCOD.

| Parameter                            | SMe-RhCOD                                                     |  |  |  |
|--------------------------------------|---------------------------------------------------------------|--|--|--|
| Empirical formula                    | $C_{25}H_{27}O_2RhS_2$                                        |  |  |  |
| Formula weight                       | 526.49                                                        |  |  |  |
| Temperature (K)                      | 100.00                                                        |  |  |  |
| Crystal system                       | orthorhombic                                                  |  |  |  |
| Space group                          | Pnma                                                          |  |  |  |
| a (Å)                                | 9.4517(3)                                                     |  |  |  |
| b (Å)                                | 23.2662(4)                                                    |  |  |  |
| c (Å)                                | 10.4808(7)                                                    |  |  |  |
| α (°)                                | 90                                                            |  |  |  |
| β (°)                                | 90                                                            |  |  |  |
| γ (°)                                | 90                                                            |  |  |  |
| Volume (ų)                           | 2304.78(17)                                                   |  |  |  |
| Z                                    | 4                                                             |  |  |  |
| $ ho_{ m calc}$ (g/cm $^3$ )         | 1.517                                                         |  |  |  |
| $\mu$ (mm <sup>-1</sup> )            | 0.941                                                         |  |  |  |
| F(000)                               | 1080.0                                                        |  |  |  |
| Crystal size (mm³)                   | 0.3 × 0.15 × 0.1                                              |  |  |  |
| Radiation                            | Mo- $K_{\alpha}$ ( $\lambda = 0.71073 \text{ Å}$ )            |  |  |  |
| 2Θ range for data collection (°)     | 4.262 to 55.194                                               |  |  |  |
| Index ranges                         | $-12 \le h \le 11, -25 \le k \le 30, -13 \le l \le 13$        |  |  |  |
| Reflections collected                | 10632                                                         |  |  |  |
| Independent reflections              | 2723 [R <sub>int</sub> = 0.0279, R <sub>sigma</sub> = 0.0211] |  |  |  |
| Data/restraints/parameters           | 2723/28/172                                                   |  |  |  |
| Goodness-of-fit on F2                | 1.154                                                         |  |  |  |
| Final R indexes $[I \ge 2\sigma(I)]$ | $R_1 = 0.0325$ , $wR_2 = 0.0643$                              |  |  |  |
| Final R indexes [all data]           | $R_1 = 0.0417$ , $wR_2 = 0.0674$                              |  |  |  |
| Largest diff. peak/hole (e Å-3)      | 0.33/-0.67                                                    |  |  |  |

Table S8 | Bond lengths for SMe-RhCOD.

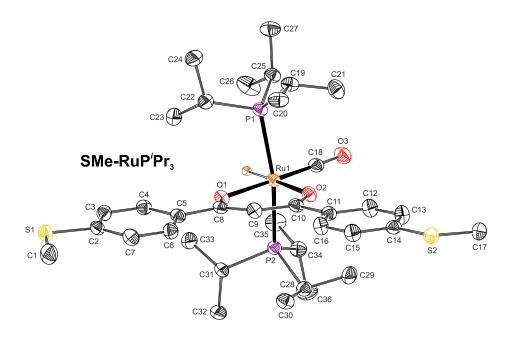
| Atom | Atom              | Length (Å) | Atom | Atom | Length (Å) |
|------|-------------------|------------|------|------|------------|
| Rh1  | O1 <sup>(a)</sup> | 2.0369(17) | C4   | C3   | 1.380(4)   |
| Rh1  | O1                | 2.0369(17) | C3   | C2   | 1.397(4)   |
| Rh1  | C10               | 2.151(16)  | C10  | C17  | 1.393(7)   |
| Rh1  | C17               | 2.07(2)    | C10  | C11  | 1.508(7)   |
| Rh1  | C13               | 2.068(17)  | C6   | C7   | 1.379(4)   |
| Rh1  | C14               | 2.15(2)    | C17  | C16  | 1.514(7)   |
| S1   | C2                | 1.760(3)   | C2   | C7   | 1.392(4)   |
| S1   | C1                | 1.796(3)   | C11  | C12  | 1.531(6)   |
| 01   | C8                | 1.283(3)   | C16  | C15  | 1.532(7)   |
| C8   | C5                | 1.482(4)   | C12  | C13  | 1.513(7)   |
| C8   | C9                | 1.401(3)   | C15  | C14  | 1.521(7)   |
| C5   | C4                | 1.394(4)   | C13  | C14  | 1.391(7)   |
| C5   | C6                | 1.400(3)   |      |      |            |

<sup>(</sup>a) +X, 1/2-Y, +Z.

Table S9 | Bond angles for SMe-RhCOD.

| Atom              | Atom | Atom | Angle (°)  | Atom | Atom | Atom              | Angle (°) |
|-------------------|------|------|------------|------|------|-------------------|-----------|
| O1 <sup>(a)</sup> | Rh1  | 01   | 91.16(10)  | C4   | C3   | C2                | 120.0(3)  |
| O1 <sup>(a)</sup> | Rh1  | C10  | 161.1(3)   | C17  | C10  | Rh1               | 67.7(11)  |
| O1                | Rh1  | C10  | 91.8(3)    | C17  | C10  | C11               | 115.2(11) |
| O1                | Rh1  | C17  | 93.5(3)    | C11  | C10  | Rh1               | 112.2(8)  |
| O1 <sup>(a)</sup> | Rh1  | C17  | 159.7(3)   | C7   | C6   | C5                | 120.5(2)  |
| 01                | Rh1  | C13  | 160.5(3)   | C10  | C17  | Rh1               | 73.8(10)  |
| O1 <sup>(a)</sup> | Rh1  | C13  | 88.7(3)    | C10  | C17  | C16               | 120.5(9)  |
| O1                | Rh1  | C14  | 160.9(3)   | C16  | C17  | Rh1               | 115.2(12) |
| O1 <sup>(a)</sup> | Rh1  | C14  | 86.2(2)    | C8   | C9   | C8 <sup>(a)</sup> | 127.1(3)  |
| C17               | Rh1  | C10  | 38.4(3)    | С3   | C2   | S1                | 124.4(2)  |
| C17               | Rh1  | C14  | 82.9(2)    | C7   | C2   | S1                | 117.1(2)  |
| C13               | Rh1  | C10  | 82.39(17)  | C7   | C2   | C3                | 118.6(2)  |
| C13               | Rh1  | C17  | 93.4(5)    | C6   | C7   | C2                | 121.3(2)  |
| C13               | Rh1  | C14  | 38.5(3)    | C10  | C11  | C12               | 110.8(9)  |
| C14               | Rh1  | C10  | 96.8(4)    | C17  | C16  | C15               | 110.8(13) |
| C2                | S1   | C1   | 102.96(14) | C13  | C12  | C11               | 112.7(10) |
| C8                | 01   | Rh1  | 125.42(17) | C14  | C15  | C16               | 115.0(11) |
| O1                | C8   | C5   | 114.1(2)   | C12  | C13  | Rh1               | 110.1(8)  |
| O1                | C8   | C9   | 125.4(3)   | C14  | C13  | Rh1               | 73.8(11)  |
| C9                | C8   | C5   | 120.5(2)   | C14  | C13  | C12               | 135.7(12) |
| C4                | C5   | C8   | 119.7(2)   | C15  | C14  | Rh1               | 107.8(12) |
| C4                | C5   | C6   | 118.0(2)   | C13  | C14  | Rh1               | 67.7(11)  |
| C6                | C5   | C8   | 122.2(2)   | C13  | C14  | C15               | 128.1(9)  |
| C3                | C4   | C5   | 121.6(2)   |      |      |                   |           |

<sup>(</sup>a) +X, 1/2-Y, +Z.


Table S10 | Torsion angles for SMe-RhCOD.

| Atom | Atom | Atom | Atom              | Angle (°)   | Atom | Atom | Atom | Atom | Angle (°) |
|------|------|------|-------------------|-------------|------|------|------|------|-----------|
| Rh1  | 01   | C8   | C5                | -178.53(15) | C3   | C2   | C7   | C6   | 0.7(4)    |
| Rh1  | 01   | C8   | C9                | 1.2(4)      | C10  | C17  | C16  | C15  | 95(2)     |
| Rh1  | C10  | C17  | C16               | -110.1(18)  | C10  | C11  | C12  | C13  | 34.5(14)  |
| Rh1  | C10  | C11  | C12               | -15.1(11)   | C6   | C5   | C4   | C3   | 1.4(4)    |
| Rh1  | C17  | C16  | C15               | 9.4(10)     | C17  | C10  | C11  | C12  | -90.0(17) |
| Rh1  | C13  | C14  | C15               | 96(2)       | C17  | C16  | C15  | C14  | -27.7(13) |
| S1   | C2   | C7   | C6                | -178.6(2)   | C9   | C8   | C5   | C4   | -156.5(3) |
| 01   | C8   | C5   | C4                | 23.3(3)     | C9   | C8   | C5   | C6   | 26.7(4)   |
| 01   | C8   | C5   | C6                | -153.5(2)   | C1   | S1   | C2   | C3   | -7.3(3)   |
| 01   | C8   | C9   | C8 <sup>(a)</sup> | -1.2(6)     | C1   | S1   | C2   | C7   | 172.0(2)  |
| C8   | C5   | C4   | C3                | -175.5(2)   | C11  | C10  | C17  | Rh1  | 105.0(12) |
| C8   | C5   | C6   | C7                | 174.4(2)    | C11  | C10  | C17  | C16  | -5(3)     |
| C5   | C8   | C9   | C8 <sup>(a)</sup> | 178.5(2)    | C11  | C12  | C13  | Rh1  | -37.7(10) |
| C5   | C4   | C3   | C2                | 0.6(4)      | C11  | C12  | C13  | C14  | 49(3)     |
| C5   | C6   | C7   | C2                | 1.3(4)      | C16  | C15  | C14  | Rh1  | 31.8(10)  |
| C4   | C5   | C6   | C7                | -2.4(4)     | C16  | C15  | C14  | C13  | -43(3)    |
| C4   | C3   | C2   | S1                | 177.6(2)    | C12  | C13  | C14  | Rh1  | -102(2)   |
| C4   | C3   | C2   | C7                | -1.7(4)     | C12  | C13  | C14  | C15  | -7(4)     |

<sup>(</sup>a) +X, 1/2-Y, +Z.

## SMe-RuP<sup>i</sup>Pr<sub>3</sub>

Single crystals of **SMe-RuP**<sup>i</sup>**Pr**<sub>3</sub> were grown by layer diffusion of *n*-pentane into a dichloromethane solution of the compound. The obtained crystallographic information file was submitted to the structural database of The Cambridge Crystallographic Data Centre and can be found under the deposition number CCDC 2161701.



**Figure S24** | ORTEPs of the transition metal complex **SMe-RuP**<sup>\*</sup>**Pr**<sub>3</sub>. Thermal ellipsoids are displayed at a 50% probability level. Hydrogen atoms (except for RuH) and co-crystallized solvent molecules are omitted for clarity reasons.

 $\textbf{Table S11} \mid \textbf{Crystal data and structure refinement for SMe-RuP'Pr_3 \cdot \textbf{CH}_2\textbf{Cl}_2.}$ 

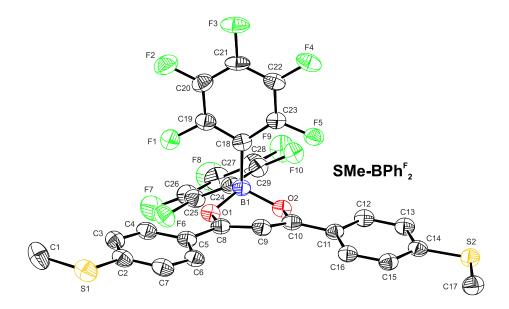
| Parameter                            | SMe-RuP'Pr <sub>3</sub> · CH <sub>2</sub> Cl <sub>2</sub>         |  |  |  |  |
|--------------------------------------|-------------------------------------------------------------------|--|--|--|--|
| Empirical formula                    | $C_{37}H_{60}CI_2O_3P_2RuS_2$                                     |  |  |  |  |
| Formula weight                       | 850.88                                                            |  |  |  |  |
| Temperature (K)                      | 100                                                               |  |  |  |  |
| Crystal system                       | triclinic                                                         |  |  |  |  |
| Space group                          | ρĪ                                                                |  |  |  |  |
| a (Å)                                | 9.9782(4)                                                         |  |  |  |  |
| b (Å)                                | 12.4346(5)                                                        |  |  |  |  |
| c (Å)                                | 17.8296(7)                                                        |  |  |  |  |
| α (°)                                | 73.003(3)                                                         |  |  |  |  |
| β (°)                                | 80.029(3)                                                         |  |  |  |  |
| γ (°)                                | 78.029(3)                                                         |  |  |  |  |
| Volume (ų)                           | 2054.55(15)                                                       |  |  |  |  |
| Z                                    | 2                                                                 |  |  |  |  |
| $ ho_{ m calc}$ (g/cm $^3$ )         | 1.375                                                             |  |  |  |  |
| M (mm <sup>-1</sup> )                | 0.724                                                             |  |  |  |  |
| F(000)                               | 892.0                                                             |  |  |  |  |
| Crystal size (mm³)                   | 0.4 × 0.267 × 0.1                                                 |  |  |  |  |
| Radiation                            | $Mo-K_{\alpha}$ ( $\lambda = 0.71073 \text{ Å}$ )                 |  |  |  |  |
| 2Θ range for data collection (°)     | 3.474 to 58.488                                                   |  |  |  |  |
| Index ranges                         | $-13 \le h \le 13$ , $-17 \le k \le 17$ , $-22 \le l \le 24$      |  |  |  |  |
| Reflections collected                | 34768                                                             |  |  |  |  |
| Independent reflections              | 11072 [ $R_{\text{int}} = 0.0629$ , $R_{\text{sigma}} = 0.0485$ ] |  |  |  |  |
| Data/restraints/parameters           | 11072/0/443                                                       |  |  |  |  |
| Goodness-of-fit on F <sup>2</sup>    | 1.049                                                             |  |  |  |  |
| Final R indexes $[I \ge 2\sigma(I)]$ | $R_1 = 0.0477$ , $wR_2 = 0.1262$                                  |  |  |  |  |
| Final R indexes [all data]           | $R_1 = 0.0605$ , $wR_2 = 0.1334$                                  |  |  |  |  |
| Largest diff. peak/hole (e Å-3)      | 0.85/-1.23                                                        |  |  |  |  |

Table S12 | Bond lengths for SMe-RuP'Pr $_3$  · CH $_2$ CI $_2$ .

| Atom | Atom | Length (Å) | Atom | Atom | Length (Å) |
|------|------|------------|------|------|------------|
| Ru1  | P1   | 2.3780(7)  | C6   | C7   | 1.386(4)   |
| Ru1  | P2   | 2.3814(6)  | C8   | C9   | 1.407(3)   |
| Ru1  | O1   | 2.1319(18) | C9   | C10  | 1.409(4)   |
| Ru1  | O2   | 2.1864(17) | C10  | C11  | 1.501(3)   |
| Ru1  | C18  | 1.805(3)   | C11  | C12  | 1.386(4)   |
| S1   | C1   | 1.794(3)   | C11  | C16  | 1.404(4)   |
| S1   | C2   | 1.762(3)   | C12  | C13  | 1.386(4)   |
| S2   | C14  | 1.757(3)   | C13  | C14  | 1.394(4)   |
| S2   | C17  | 1.797(3)   | C14  | C15  | 1.394(4)   |
| P1   | C19  | 1.860(3)   | C15  | C16  | 1.377(4)   |
| P1   | C22  | 1.862(3)   | C19  | C20  | 1.530(4)   |
| P1   | C25  | 1.869(3)   | C19  | C21  | 1.528(4)   |
| P2   | C28  | 1.855(3)   | C22  | C23  | 1.534(4)   |
| P2   | C31  | 1.857(3)   | C22  | C24  | 1.537(4)   |
| P2   | C34  | 1.869(3)   | C25  | C26  | 1.523(4)   |
| 01   | C8   | 1.277(3)   | C25  | C27  | 1.530(4)   |
| O2   | C10  | 1.263(3)   | C28  | C29  | 1.542(4)   |
| О3   | C18  | 1.162(3)   | C28  | C30  | 1.535(4)   |
| C2   | C3   | 1.403(4)   | C31  | C32  | 1.528(3)   |
| C2   | C7   | 1.386(4)   | C31  | C33  | 1.542(4)   |
| C3   | C4   | 1.383(4)   | C34  | C35  | 1.530(4)   |
| C4   | C5   | 1.402(3)   | C34  | C36  | 1.535(4)   |
| C5   | C6   | 1.386(4)   | CI1  | C37  | 1.730(4)   |
| C5   | C8   | 1.499(3)   | CI2  | C37  | 1.693(5)   |

Table S13 | Bond angles for SMe-RuP′Pr $_3$  · CH $_2$ CI $_2$ .

| Atom | Atom | Atom | Angle (°)  | Atom | Atom | Atom | Angle (°)  |
|------|------|------|------------|------|------|------|------------|
| P1   | Ru1  | P2   | 165.23(2)  | 01   | C8   | C9   | 125.9(2)   |
| 01   | Ru1  | P1   | 90.14(5)   | C9   | C8   | C5   | 119.2(2)   |
| 01   | Ru1  | P2   | 88.52(5)   | C8   | C9   | C10  | 126.3(2)   |
| 01   | Ru1  | O2   | 84.49(7)   | O2   | C10  | C9   | 125.3(2)   |
| O2   | Ru1  | P1   | 97.84(5)   | O2   | C10  | C11  | 115.5(2)   |
| O2   | Ru1  | P2   | 96.68(5)   | C9   | C10  | C11  | 119.2(2)   |
| C18  | Ru1  | P1   | 90.05(8)   | C12  | C11  | C10  | 118.6(2)   |
| C18  | Ru1  | P2   | 90.67(8)   | C12  | C11  | C16  | 117.1(2)   |
| C18  | Ru1  | 01   | 177.50(9)  | C16  | C11  | C10  | 124.3(2)   |
| C18  | Ru1  | O2   | 97.96(9)   | C13  | C12  | C11  | 122.4(3)   |
| C2   | S1   | C1   | 103.67(14) | C12  | C13  | C14  | 119.9(3)   |
| C14  | S2   | C17  | 103.80(13) | C13  | C14  | S2   | 124.8(2)   |
| C19  | P1   | Ru1  | 118.29(9)  | C13  | C14  | C15  | 118.2(2)   |
| C19  | P1   | C22  | 102.89(12) | C15  | C14  | S2   | 117.0(2)   |
| C19  | P1   | C25  | 100.98(12) | C16  | C15  | C14  | 121.3(3)   |
| C22  | P1   | Ru1  | 111.59(8)  | C15  | C16  | C11  | 120.9(3)   |
| C22  | P1   | C25  | 110.05(12) | О3   | C18  | Ru1  | 178.4(2)   |
| C25  | P1   | Ru1  | 112.17(9)  | C20  | C19  | P1   | 112.76(19) |
| C28  | P2   | Ru1  | 119.21(8)  | C21  | C19  | P1   | 110.57(19) |
| C28  | P2   | C31  | 102.54(12) | C21  | C19  | C20  | 110.5(2)   |
| C28  | P2   | C34  | 101.24(12) | C23  | C22  | P1   | 113.50(19) |
| C31  | P2   | Ru1  | 110.91(8)  | C23  | C22  | C24  | 109.8(2)   |
| C31  | P2   | C34  | 110.03(12) | C24  | C22  | P1   | 117.1(2)   |
| C34  | P2   | Ru1  | 112.09(9)  | C26  | C25  | P1   | 114.00(19) |
| C8   | 01   | Ru1  | 129.08(16) | C26  | C25  | C27  | 109.0(2)   |
| C10  | O2   | Ru1  | 128.54(16) | C27  | C25  | P1   | 116.87(19) |
| C3   | C2   | S1   | 116.25(19) | C29  | C28  | P2   | 110.07(19) |
| C7   | C2   | S1   | 124.8(2)   | C30  | C28  | P2   | 113.13(19) |
| C7   | C2   | C3   | 119.0(2)   | C30  | C28  | C29  | 110.5(2)   |
| C4   | C3   | C2   | 120.2(2)   | C32  | C31  | P2   | 115.15(19) |
| C3   | C4   | C5   | 121.1(2)   | C32  | C31  | C33  | 109.7(2)   |
| C4   | C5   | C8   | 119.0(2)   | C33  | C31  | P2   | 113.78(18) |
| C6   | C5   | C4   | 117.6(2)   | C35  | C34  | P2   | 113.35(19) |
| C6   | C5   | C8   | 123.4(2)   | C35  | C34  | C36  | 109.5(2)   |
| C7   | C6   | C5   | 121.9(2)   | C36  | C34  | P2   | 117.6(2)   |
| C2   | C7   | C6   | 120.1(3)   | CI2  | C37  | CI1  | 116.0(3)   |
| 01   | C8   | C5   | 114.9(2)   |      |      |      |            |


Table S14 | Torsion angles for SMe-RuP'Pr $_3$  · CH $_2$ CI $_2$ .

| Atom | Atom | Atom | Atom | Angle (°)   | Atom | Atom | Atom | Atom | Angle (°)   |
|------|------|------|------|-------------|------|------|------|------|-------------|
| Ru1  | P1   | C19  | C20  | -70.1(2)    | C8   | C9   | C10  | C11  | -175.0(2)   |
| Ru1  | P1   | C19  | C21  | 54.1(2)     | C9   | C10  | C11  | C12  | -179.9(2)   |
| Ru1  | P1   | C22  | C23  | -57.0(2)    | C9   | C10  | C11  | C16  | 0.1(4)      |
| Ru1  | P1   | C22  | C24  | 173.42(19)  | C10  | C11  | C12  | C13  | -180.0(2)   |
| Ru1  | P1   | C25  | C26  | 59.0(2)     | C10  | C11  | C16  | C15  | 179.8(2)    |
| Ru1  | P1   | C25  | C27  | -172.28(18) | C11  | C12  | C13  | C14  | -0.2(4)     |
| Ru1  | P2   | C28  | C29  | -55.4(2)    | C12  | C11  | C16  | C15  | -0.2(4)     |
| Ru1  | P2   | C28  | C30  | 68.8(2)     | C12  | C13  | C14  | S2   | -178.3(2)   |
| Ru1  | P2   | C31  | C32  | 176.36(17)  | C12  | C13  | C14  | C15  | 0.5(4)      |
| Ru1  | P2   | C31  | C33  | 48.4(2)     | C13  | C14  | C15  | C16  | -0.6(4)     |
| Ru1  | P2   | C34  | C35  | -59.9(2)    | C14  | C15  | C16  | C11  | 0.5(4)      |
| Ru1  | P2   | C34  | C36  | 170.55(19)  | C16  | C11  | C12  | C13  | 0.0(4)      |
| Ru1  | 01   | C8   | C5   | 176.35(14)  | C17  | S2   | C14  | C13  | -7.5(3)     |
| Ru1  | 01   | C8   | C9   | -3.8(4)     | C17  | S2   | C14  | C15  | 173.6(2)    |
| Ru1  | O2   | C10  | C9   | -1.1(4)     | C19  | P1   | C22  | C23  | 175.12(19)  |
| Ru1  | O2   | C10  | C11  | 179.03(14)  | C19  | P1   | C22  | C24  | 45.6(2)     |
| S1   | C2   | C3   | C4   | 178.95(19)  | C19  | P1   | C25  | C26  | -174.1(2)   |
| S1   | C2   | C7   | C6   | -178.3(2)   | C19  | P1   | C25  | C27  | -45.4(2)    |
| S2   | C14  | C15  | C16  | 178.2(2)    | C22  | P1   | C19  | C20  | 53.4(2)     |
| 01   | C8   | C9   | C10  | -2.6(4)     | C22  | P1   | C19  | C21  | 177.63(19)  |
| O2   | C10  | C11  | C12  | -0.1(3)     | C22  | P1   | C25  | C26  | -65.9(2)    |
| O2   | C10  | C11  | C16  | 180.0(2)    | C22  | P1   | C25  | C27  | 62.8(2)     |
| C1   | S1   | C2   | C3   | 178.2(2)    | C25  | P1   | C19  | C20  | 167.2(2)    |
| C1   | S1   | C2   | C7   | -2.3(3)     | C25  | P1   | C19  | C21  | -68.6(2)    |
| C2   | C3   | C4   | C5   | -1.0(4)     | C25  | P1   | C22  | C23  | 68.2(2)     |
| C3   | C2   | C7   | C6   | 1.1(4)      | C25  | P1   | C22  | C24  | -61.4(2)    |
| C3   | C4   | C5   | C6   | 2.0(4)      | C28  | P2   | C31  | C32  | -55.3(2)    |
| C3   | C4   | C5   | C8   | -177.5(2)   | C28  | P2   | C31  | C33  | 176.8(2)    |
| C4   | C5   | C6   | C7   | -1.4(4)     | C28  | P2   | C34  | C35  | 171.9(2)    |
| C4   | C5   | C8   | 01   | -8.2(3)     | C28  | P2   | C34  | C36  | 42.4(2)     |
| C4   | C5   | C8   | C9   | 172.0(2)    | C31  | P2   | C28  | C29  | -178.32(19) |
| C5   | C6   | C7   | C2   | -0.1(4)     | C31  | P2   | C28  | C30  | -54.1(2)    |
| C5   | C8   | C9   | C10  | 177.3(2)    | C31  | P2   | C34  | C35  | 64.0(2)     |
| C6   | C5   | C8   | 01   | 172.4(2)    | C31  | P2   | C34  | C36  | -65.5(2)    |
| C6   | C5   | C8   | C9   | -7.4(4)     | C34  | P2   | C28  | C29  | 68.0(2)     |
| C7   | C2   | C3   | C4   | -0.6(4)     | C34  | P2   | C28  | C30  | -167.81(19) |
| C8   | C5   | C6   | C7   | 178.0(2)    | C34  | P2   | C31  | C32  | 51.8(2)     |
| C8   | C9   | C10  | O2   | 5.2(4)      | C34  | P2   | C31  | C33  | -76.1(2)    |

# SMe-BPhF<sub>2</sub>

Single crystals of  $SMe-BPh^F_2$  were grown by slow evaporation of a n-heptane solution of the compound. The obtained crystallographic information file was submitted to the structural database of The

Cambridge Crystallographic Data Centre and can be found under the deposition number CCDC 2161703.



**Figure S25** | ORTEP of the coordination compound **SMe-BPh**<sup>F</sup><sub>2</sub>. Thermal ellipsoids are displayed at a 50% probability level. Hydrogen atoms, the second molecular entity within the cell and co-crystallized solvent molecules are omitted for clarity reasons.

Table S15 | Crystal data and structure refinement for (SMe-BPhF2)2  $\cdot$  C7H16.

| Parameter                                    | $(SMe-BPh^{F_2})_2 \cdot C_7H_{16}$                    |  |  |  |  |  |
|----------------------------------------------|--------------------------------------------------------|--|--|--|--|--|
| Empirical formula                            | $C_{65}H_{46}B_2F_{20}O_4S_4$                          |  |  |  |  |  |
| Formula weight                               | 1420.88                                                |  |  |  |  |  |
| Temperature (K)                              | 100                                                    |  |  |  |  |  |
| Crystal system                               | monoclinic                                             |  |  |  |  |  |
| Space group                                  | <i>P</i> 2₁/n                                          |  |  |  |  |  |
| a (Å)                                        | 8.7932(6)                                              |  |  |  |  |  |
| b (Å)                                        | 21.5764(9)                                             |  |  |  |  |  |
| c (Å)                                        | 32.252(2)                                              |  |  |  |  |  |
| α (°)                                        | 90                                                     |  |  |  |  |  |
| β (°)                                        | 95.172(5)                                              |  |  |  |  |  |
| γ (°)                                        | 90                                                     |  |  |  |  |  |
| Volume (ų)                                   | 6094.1(7)                                              |  |  |  |  |  |
| Z                                            | 4                                                      |  |  |  |  |  |
| $ ho_{ m calc}$ (g/cm $^3$ )                 | 1.549                                                  |  |  |  |  |  |
| $\mu$ (mm <sup>-1</sup> )                    | 0.268                                                  |  |  |  |  |  |
| F(000)                                       | 2888.0                                                 |  |  |  |  |  |
| Crystal size (mm³)                           | 0.4 × 0.233 × 0.1                                      |  |  |  |  |  |
| Radiation                                    | Mo- $K_{\alpha}$ ( $\lambda = 0.71073 \text{ Å}$ )     |  |  |  |  |  |
| 2Θ range for data collection (°)             | 3.776 to 56.732                                        |  |  |  |  |  |
| Index ranges                                 | $-10 \le h \le 11, -28 \le k \le 26, -43 \le l \le 43$ |  |  |  |  |  |
| Reflections collected                        | 53375                                                  |  |  |  |  |  |
| Independent reflections                      | 15200 [ $R_{int} = 0.0919$ , $R_{sigma} = 0.1129$ ]    |  |  |  |  |  |
| Data/restraints/parameters                   | 15200/210/928                                          |  |  |  |  |  |
| Goodness-of-fit on F2                        | 0.828                                                  |  |  |  |  |  |
| Final R indexes $[I \ge 2\sigma(I)]$         | $R_1 = 0.0515$ , w $R_2 = 0.0978$                      |  |  |  |  |  |
| Final R indexes [all data]                   | $R_1 = 0.1484$ , $wR_2 = 0.1244$                       |  |  |  |  |  |
| Largest diff. peak/hole (e Å <sup>-3</sup> ) | 0.34/-0.31                                             |  |  |  |  |  |

Table S16 | Bond lengths for (SMe-BPh $^{\text{F}}_{\text{2}}$ ) $_2 \cdot \text{C}_7\text{H}_{\text{16}}$ .

| Atom | Atom | Length (Å) | Atom | Atom | Length (Å) |
|------|------|------------|------|------|------------|
| S1   | C1   | 1.782(4)   | F13  | C50  | 1.345(4)   |
| S1   | C2   | 1.744(3)   | F14  | C51  | 1.353(4)   |
| S2   | C14  | 1.749(3)   | F15  | C52  | 1.358(3)   |
| S2   | C17  | 1.794(3)   | F16  | C54  | 1.357(3)   |
| F1   | C19  | 1.359(3)   | F17  | C55  | 1.356(4)   |
| F2   | C20  | 1.347(4)   | F18  | C56  | 1.352(4)   |
| F3   | C21  | 1.353(3)   | F19  | C57  | 1.346(4)   |
| F4   | C22  | 1.346(3)   | F20  | C58  | 1.350(3)   |
| F5   | C23  | 1.351(3)   | О3   | C37  | 1.323(3)   |
| F6   | C25  | 1.355(4)   | О3   | B2   | 1.499(4)   |
| F7   | C26  | 1.348(4)   | O4   | C39  | 1.316(3)   |
| F8   | C27  | 1.347(3)   | 04   | B2   | 1.491(4)   |
| F9   | C28  | 1.349(4)   | C31  | C32  | 1.411(4)   |
| F10  | C29  | 1.349(3)   | C31  | C36  | 1.402(4)   |
| 01   | C8   | 1.313(3)   | C32  | C33  | 1.377(4)   |
| 01   | B1   | 1.499(4)   | C33  | C34  | 1.403(4)   |
| O2   | C10  | 1.321(3)   | C34  | C35  | 1.401(4)   |
| O2   | B1   | 1.502(4)   | C34  | C37  | 1.460(4)   |
| C2   | C3   | 1.403(4)   | C35  | C36  | 1.379(4)   |
| C2   | C7   | 1.398(4)   | C37  | C38  | 1.384(4)   |
| C3   | C4   | 1.381(4)   | C38  | C39  | 1.391(4)   |
| C4   | C5   | 1.394(4)   | C39  | C40  | 1.465(4)   |
| C5   | C6   | 1.408(4)   | C40  | C41  | 1.381(4)   |
| C5   | C8   | 1.456(4)   | C40  | C45  | 1.411(4)   |
| C6   | C7   | 1.369(4)   | C41  | C42  | 1.384(4)   |
| C8   | C9   | 1.397(4)   | C42  | C43  | 1.402(4)   |
| C9   | C10  | 1.391(4)   | C43  | C44  | 1.400(5)   |
| C10  | C11  | 1.460(4)   | C44  | C45  | 1.380(4)   |
| C11  | C12  | 1.405(4)   | C47  | C48  | 1.386(4)   |
| C11  | C16  | 1.401(4)   | C47  | C52  | 1.392(4)   |
| C12  | C13  | 1.373(4)   | C47  | B2   | 1.643(4)   |
| C13  | C14  | 1.400(4)   | C48  | C49  | 1.380(4)   |
| C14  | C15  | 1.405(4)   | C49  | C50  | 1.372(5)   |
| C15  | C16  | 1.377(4)   | C50  | C51  | 1.373(5)   |
| C18  | C19  | 1.388(4)   | C51  | C52  | 1.370(4)   |
| C18  | C23  | 1.386(4)   | C53  | C54  | 1.384(4)   |
| C18  | B1   | 1.642(5)   | C53  | C58  | 1.389(4)   |
| C19  | C20  | 1.380(5)   | C53  | B2   | 1.618(4)   |
| C20  | C21  | 1.371(5)   | C54  | C55  | 1.368(4)   |
| C21  | C22  | 1.364(5)   | C55  | C56  | 1.372(5)   |
| C22  | C23  | 1.385(4)   | C56  | C57  | 1.363(5)   |
| C24  | C25  | 1.395(4)   | C57  | C58  | 1.378(4)   |
| C24  | C29  | 1.387(4)   | C59  | C60  | 1.536(10)  |

| Atom | Atom | Length (Å) | Atom | Atom | Length (Å) |
|------|------|------------|------|------|------------|
| C24  | B1   | 1.617(4)   | C60  | C61  | 1.522(11)  |
| C25  | C26  | 1.383(4)   | C61  | C62  | 1.530(7)   |
| C26  | C27  | 1.366(5)   | C62  | C63  | 1.524(11)  |
| C27  | C28  | 1.385(5)   | C63  | C64  | 1.509(9)   |
| C28  | C29  | 1.371(4)   | C64  | C65  | 1.503(11)  |
| S3   | C30  | 1.791(4)   | C66  | C67  | 1.501(10)  |
| S3   | C31  | 1.750(3)   | C67  | C68  | 1.530(9)   |
| S4   | C43  | 1.744(3)   | C68  | C69  | 1.520(9)   |
| S4   | C46  | 1.786(4)   | C69  | C70  | 1.507(8)   |
| F11  | C48  | 1.356(3)   | C70  | C71  | 1.541(8)   |
| F12  | C49  | 1.356(3)   | C71  | C72  | 1.511(10)  |

Table S17 | Bond angles for (SMe-BPh $^{\text{F}}_2$ ) $_2 \cdot \text{C}_7\text{H}_{16}$ .

| Atom | Atom | Atom | Angle (°)  | Atom | Atom | Atom | Angle (°) |
|------|------|------|------------|------|------|------|-----------|
| C2   | S1   | C1   | 104.45(17) | C36  | C31  | S3   | 124.4(2)  |
| C14  | S2   | C17  | 103.12(16) | C36  | C31  | C32  | 118.6(3)  |
| C8   | 01   | B1   | 117.1(2)   | C33  | C32  | C31  | 120.4(3)  |
| C10  | 02   | B1   | 117.1(2)   | C32  | C33  | C34  | 121.2(3)  |
| C3   | C2   | S1   | 125.6(3)   | C33  | C34  | C37  | 119.7(3)  |
| C7   | C2   | S1   | 115.6(2)   | C35  | C34  | C33  | 118.0(3)  |
| C7   | C2   | C3   | 118.8(3)   | C35  | C34  | C37  | 122.3(3)  |
| C4   | C3   | C2   | 120.3(3)   | C36  | C35  | C34  | 121.4(3)  |
| C3   | C4   | C5   | 120.6(3)   | C35  | C36  | C31  | 120.4(3)  |
| C4   | C5   | C6   | 119.1(3)   | О3   | C37  | C34  | 115.0(3)  |
| C4   | C5   | C8   | 120.5(3)   | О3   | C37  | C38  | 120.1(3)  |
| C6   | C5   | C8   | 120.3(3)   | C38  | C37  | C34  | 124.8(3)  |
| C7   | C6   | C5   | 120.2(3)   | C37  | C38  | C39  | 119.6(3)  |
| C6   | C7   | C2   | 121.0(3)   | O4   | C39  | C38  | 119.8(3)  |
| 01   | C8   | C5   | 115.7(3)   | 04   | C39  | C40  | 114.8(3)  |
| 01   | C8   | C9   | 120.0(3)   | C38  | C39  | C40  | 125.5(3)  |
| C9   | C8   | C5   | 124.4(3)   | C41  | C40  | C39  | 119.8(3)  |
| C10  | C9   | C8   | 119.5(3)   | C41  | C40  | C45  | 119.1(3)  |
| O2   | C10  | C9   | 119.8(3)   | C45  | C40  | C39  | 121.1(3)  |
| 02   | C10  | C11  | 116.1(3)   | C40  | C41  | C42  | 121.0(3)  |
| C9   | C10  | C11  | 124.2(3)   | C41  | C42  | C43  | 120.4(3)  |
| C12  | C11  | C10  | 120.3(3)   | C42  | C43  | S4   | 125.4(3)  |
| C16  | C11  | C10  | 121.4(3)   | C44  | C43  | S4   | 115.9(2)  |
| C16  | C11  | C12  | 118.3(3)   | C44  | C43  | C42  | 118.7(3)  |
| C13  | C12  | C11  | 120.6(3)   | C45  | C44  | C43  | 120.7(3)  |
| C12  | C13  | C14  | 121.4(3)   | C44  | C45  | C40  | 120.1(3)  |
| C13  | C14  | S2   | 118.2(2)   | C48  | C47  | C52  | 113.4(3)  |
| C13  | C14  | C15  | 118.0(3)   | C48  | C47  | B2   | 126.6(3)  |
| C15  | C14  | S2   | 123.8(2)   | C52  | C47  | B2   | 119.8(3)  |
| C16  | C15  | C14  | 120.8(3)   | F11  | C48  | C47  | 120.5(3)  |
| C15  | C16  | C11  | 121.0(3)   | F11  | C48  | C49  | 115.6(3)  |
| C19  | C18  | B1   | 119.1(3)   | C49  | C48  | C47  | 123.9(3)  |
| C23  | C18  | C19  | 113.8(3)   | F12  | C49  | C48  | 120.6(3)  |
| C23  | C18  | B1   | 127.1(3)   | F12  | C49  | C50  | 119.8(3)  |
| F1   | C19  | C18  | 119.5(3)   | C50  | C49  | C48  | 119.6(3)  |
| F1   | C19  | C20  | 116.1(3)   | F13  | C50  | C49  | 120.4(3)  |
| C20  | C19  | C18  | 124.4(3)   | F13  | C50  | C51  | 120.5(3)  |
| F2   | C20  | C19  | 120.9(3)   | C49  | C50  | C51  | 119.1(3)  |
| F2   | C20  | C21  | 120.6(3)   | F14  | C51  | C50  | 119.8(3)  |
| C21  | C20  | C19  | 118.6(3)   | F14  | C51  | C52  | 120.8(3)  |
| F3   | C21  | C20  | 119.6(3)   | C52  | C51  | C50  | 119.4(3)  |
| F3   | C21  | C22  | 120.2(3)   | F15  | C52  | C47  | 119.1(3)  |
| C22  | C21  | C20  | 120.2(3)   | F15  | C52  | C51  | 116.5(3)  |
|      |      |      |            | 1    |      |      |           |

| Atom | Atom | Atom | Angle (°)  | Atom | Atom | Atom | Angle (°) |
|------|------|------|------------|------|------|------|-----------|
| F4   | C22  | C21  | 120.5(3)   | C51  | C52  | C47  | 124.4(3)  |
| F4   | C22  | C23  | 120.3(3)   | C54  | C53  | C58  | 114.0(3)  |
| C21  | C22  | C23  | 119.2(3)   | C54  | C53  | B2   | 119.6(3)  |
| F5   | C23  | C18  | 120.3(3)   | C58  | C53  | B2   | 126.4(3)  |
| F5   | C23  | C22  | 115.9(3)   | F16  | C54  | C53  | 119.1(3)  |
| C22  | C23  | C18  | 123.8(3)   | F16  | C54  | C55  | 116.4(3)  |
| C25  | C24  | B1   | 126.7(3)   | C55  | C54  | C53  | 124.5(3)  |
| C29  | C24  | C25  | 114.3(3)   | F17  | C55  | C54  | 121.1(3)  |
| C29  | C24  | B1   | 119.0(3)   | F17  | C55  | C56  | 120.0(3)  |
| F6   | C25  | C24  | 121.0(3)   | C54  | C55  | C56  | 118.9(3)  |
| F6   | C25  | C26  | 115.9(3)   | F18  | C56  | C55  | 120.3(3)  |
| C26  | C25  | C24  | 123.1(3)   | F18  | C56  | C57  | 120.1(3)  |
| F7   | C26  | C25  | 120.9(3)   | C57  | C56  | C55  | 119.6(3)  |
| F7   | C26  | C27  | 119.4(3)   | F19  | C57  | C56  | 119.5(3)  |
| C27  | C26  | C25  | 119.7(3)   | F19  | C57  | C58  | 120.6(3)  |
| F8   | C27  | C26  | 120.1(3)   | C56  | C57  | C58  | 119.8(3)  |
| F8   | C27  | C28  | 120.3(3)   | F20  | C58  | C53  | 121.1(3)  |
| C26  | C27  | C28  | 119.7(3)   | F20  | C58  | C57  | 115.8(3)  |
| F9   | C28  | C27  | 119.9(3)   | C57  | C58  | C53  | 123.1(3)  |
| F9   | C28  | C29  | 121.3(3)   | O3   | B2   | C47  | 110.6(2)  |
| C29  | C28  | C27  | 118.8(3)   | O3   | B2   | C53  | 108.7(2)  |
| F10  | C29  | C24  | 118.8(3)   | 04   | B2   | О3   | 107.5(2)  |
| F10  | C29  | C28  | 116.8(3)   | 04   | B2   | C47  | 108.7(2)  |
| C28  | C29  | C24  | 124.4(3)   | O4   | B2   | C53  | 110.5(2)  |
| 01   | B1   | O2   | 107.5(2)   | C53  | B2   | C47  | 110.8(2)  |
| 01   | B1   | C18  | 107.8(2)   | C61  | C60  | C59  | 114.3(11) |
| 01   | B1   | C24  | 110.5(2)   | C60  | C61  | C62  | 114.4(9)  |
| O2   | B1   | C18  | 111.3(2)   | C63  | C62  | C61  | 112.1(8)  |
| O2   | B1   | C24  | 108.0(2)   | C64  | C63  | C62  | 118.3(10) |
| C24  | B1   | C18  | 111.7(2)   | C65  | C64  | C63  | 117.1(11) |
| C31  | S3   | C30  | 103.31(17) | C66  | C67  | C68  | 113.7(10) |
| C43  | S4   | C46  | 103.90(16) | C69  | C68  | C67  | 111.5(7)  |
| C37  | О3   | B2   | 116.8(2)   | C70  | C69  | C68  | 115.2(6)  |
| C39  | 04   | B2   | 117.6(2)   | C69  | C70  | C71  | 113.6(7)  |
| C32  | C31  | S3   | 117.0(3)   | C72  | C71  | C70  | 113.7(8)  |

Table S18 | Torsion angles for (SMe-BPhF2)2  $\cdot$  C7H16.

| Atom | Atom | Atom | Atom | Angle (°) | Atom | Atom | Atom | Atom | Angle (°) |
|------|------|------|------|-----------|------|------|------|------|-----------|
| S1   | C2   | C3   | C4   | 178.7(2)  | F11  | C48  | C49  | C50  | -179.4(3) |
| S1   | C2   | C7   | C6   | -178.7(2) | F12  | C49  | C50  | F13  | -0.7(5)   |
| S2   | C14  | C15  | C16  | -179.5(2) | F12  | C49  | C50  | C51  | 180.0(3)  |
| F1   | C19  | C20  | F2   | -0.2(5)   | F13  | C50  | C51  | F14  | 0.6(5)    |
| F1   | C19  | C20  | C21  | -179.4(3) | F13  | C50  | C51  | C52  | -179.0(3) |
| F2   | C20  | C21  | F3   | -0.5(5)   | F14  | C51  | C52  | F15  | -0.1(4)   |
| F2   | C20  | C21  | C22  | -179.7(3) | F14  | C51  | C52  | C47  | -180.0(3) |
| F3   | C21  | C22  | F4   | 0.6(4)    | F16  | C54  | C55  | F17  | 0.1(5)    |
| F3   | C21  | C22  | C23  | -178.8(3) | F16  | C54  | C55  | C56  | 178.9(4)  |
| F4   | C22  | C23  | F5   | -0.1(4)   | F17  | C55  | C56  | F18  | -0.5(7)   |
| F4   | C22  | C23  | C18  | 180.0(3)  | F17  | C55  | C56  | C57  | -178.8(4) |
| F6   | C25  | C26  | F7   | 1.1(5)    | F18  | C56  | C57  | F19  | 0.8(7)    |
| F6   | C25  | C26  | C27  | -178.2(3) | F18  | C56  | C57  | C58  | 179.7(4)  |
| F7   | C26  | C27  | F8   | -1.0(5)   | F19  | C57  | C58  | F20  | -0.2(6)   |
| F7   | C26  | C27  | C28  | 178.5(3)  | F19  | C57  | C58  | C53  | -179.9(4) |
| F8   | C27  | C28  | F9   | -1.1(5)   | О3   | C37  | C38  | C39  | -11.5(4)  |
| F8   | C27  | C28  | C29  | -179.7(3) | 04   | C39  | C40  | C41  | 9.7(4)    |
| F9   | C28  | C29  | F10  | 2.0(5)    | 04   | C39  | C40  | C45  | -173.0(3) |
| F9   | C28  | C29  | C24  | -177.0(3) | C30  | S3   | C31  | C32  | -178.2(2) |
| 01   | C8   | C9   | C10  | -12.6(4)  | C30  | S3   | C31  | C36  | 1.6(3)    |
| 02   | C10  | C11  | C12  | 14.0(4)   | C31  | C32  | C33  | C34  | 0.3(5)    |
| 02   | C10  | C11  | C16  | -167.3(3) | C32  | C31  | C36  | C35  | 0.1(4)    |
| C1   | S1   | C2   | C3   | 0.4(3)    | C32  | C33  | C34  | C35  | 0.3(4)    |
| C1   | S1   | C2   | C7   | -179.3(3) | C32  | C33  | C34  | C37  | -178.3(3) |
| C2   | C3   | C4   | C5   | -0.1(5)   | C33  | C34  | C35  | C36  | -0.7(4)   |
| C3   | C2   | C7   | C6   | 1.6(5)    | C33  | C34  | C37  | О3   | -11.5(4)  |
| C3   | C4   | C5   | C6   | 2.0(4)    | C33  | C34  | C37  | C38  | 169.8(3)  |
| C3   | C4   | C5   | C8   | -174.8(3) | C34  | C35  | C36  | C31  | 0.5(4)    |
| C4   | C5   | C6   | C7   | -2.1(4)   | C34  | C37  | C38  | C39  | 167.2(3)  |
| C4   | C5   | C8   | 01   | -10.7(4)  | C35  | C34  | C37  | О3   | 170.0(3)  |
| C4   | C5   | C8   | C9   | 169.5(3)  | C35  | C34  | C37  | C38  | -8.7(5)   |
| C5   | C6   | C7   | C2   | 0.3(5)    | C36  | C31  | C32  | C33  | -0.5(5)   |
| C5   | C8   | C9   | C10  | 167.3(3)  | C37  | О3   | B2   | 04   | 44.8(3)   |
| C6   | C5   | C8   | 01   | 172.6(3)  | C37  | O3   | B2   | C47  | -73.7(3)  |
| C6   | C5   | C8   | C9   | -7.2(5)   | C37  | O3   | B2   | C53  | 164.4(2)  |
| C7   | C2   | C3   | C4   | -1.6(5)   | C37  | C34  | C35  | C36  | 177.8(3)  |
| C8   | 01   | B1   | 02   | 45.4(3)   | C37  | C38  | C39  | 04   | 11.9(4)   |
| C8   | 01   | B1   | C18  | -74.6(3)  | C37  | C38  | C39  | C40  | -167.3(3) |
| C8   | 01   | B1   | C24  | 163.0(2)  | C38  | C39  | C40  | C41  | -171.0(3) |
| C8   | C5   | C6   | C7   | 174.7(3)  | C38  | C39  | C40  | C45  | 6.3(5)    |
| C8   | C9   | C10  | 02   | 13.0(4)   | C39  | 04   | B2   | О3   | -44.7(3)  |
| C8   | C9   | C10  | C11  | -165.7(3) | C39  | 04   | B2   | C47  | 75.1(3)   |
| C9   | C10  | C11  | C12  | -167.3(3) | C39  | 04   | B2   | C53  | -163.2(2) |
|      |      |      |      |           | 1    |      |      |      |           |

| Atom | Atom      | Atom | Atom | Angle (°) | Atom | Atom | Atom | Atom | Angle (°) |
|------|-----------|------|------|-----------|------|------|------|------|-----------|
| C9   | C10       | C11  | C16  | 11.5(4)   | C39  | C40  | C41  | C42  | 176.5(3)  |
| C10  | O2        | B1   | 01   | -44.9(3)  | C39  | C40  | C45  | C44  | -175.7(3) |
| C10  | O2        | B1   | C18  | 72.9(3)   | C40  | C41  | C42  | C43  | -0.6(5)   |
| C10  | 02        | B1   | C24  | -164.2(2) | C41  | C40  | C45  | C44  | 1.6(4)    |
| C10  | C11       | C12  | C13  | 179.1(3)  | C41  | C42  | C43  | S4   | -179.2(2) |
| C10  | C11       | C16  | C15  | -178.6(3) | C41  | C42  | C43  | C44  | 1.3(5)    |
| C11  | C12       | C13  | C14  | -0.4(5)   | C42  | C43  | C44  | C45  | -0.6(5)   |
| C12  | C11       | C16  | C15  | 0.2(4)    | C43  | C44  | C45  | C40  | -0.9(5)   |
| C12  | C13       | C14  | S2   | 179.9(2)  | C45  | C40  | C41  | C42  | -0.9(4)   |
| C12  | C13       | C14  | C15  | 0.2(4)    | C46  | S4   | C43  | C42  | 5.9(3)    |
| C13  | C14       | C15  | C16  | 0.3(4)    | C46  | S4   | C43  | C44  | -174.7(3) |
| C14  | C15       | C16  | C11  | -0.5(4)   | C47  | C48  | C49  | F12  | -179.7(3) |
| C16  | C11       | C12  | C13  | 0.2(4)    | C47  | C48  | C49  | C50  | 1.1(5)    |
| C17  | S2        | C14  | C13  | 179.3(2)  | C48  | C47  | C52  | F15  | -179.3(2) |
| C17  | S2        | C14  | C15  | -1.0(3)   | C48  | C47  | C52  | C51  | 0.6(4)    |
| C18  | C19       | C20  | F2   | 180.0(3)  | C48  | C47  | B2   | О3   | -19.1(4)  |
| C18  | C19       | C20  | C21  | 0.8(5)    | C48  | C47  | B2   | 04   | -137.0(3) |
| C19  | C18       | C23  | F5   | -179.1(3) | C48  | C47  | B2   | C53  | 101.5(3)  |
| C19  | C18       | C23  | C22  | 0.9(4)    | C48  | C49  | C50  | F13  | 178.6(3)  |
| C19  | C18       | B1   | 01   | -51.6(3)  | C48  | C49  | C50  | C51  | -0.7(5)   |
| C19  | C18       | B1   | 02   | -169.1(3) | C49  | C50  | C51  | F14  | 180.0(3)  |
| C19  | C18       | B1   | C24  | 70.1(4)   | C49  | C50  | C51  | C52  | 0.4(5)    |
| C19  | C20       | C21  | F3   | 178.7(3)  | C50  | C51  | C52  | F15  | 179.5(3)  |
| C19  | C20       | C21  | C22  | -0.5(5)   | C50  | C51  | C52  | C47  | -0.4(5)   |
| C20  | C21       | C22  | F4   | 179.8(3)  | C52  | C47  | C48  | F11  | 179.5(2)  |
| C20  | C21       | C22  | C23  | 0.4(5)    | C52  | C47  | C48  | C49  | -1.0(4)   |
| C21  | C22       | C23  | F5   | 179.3(3)  | C52  | C47  | B2   | О3   | 165.8(3)  |
| C21  | C22       | C23  | C18  | -0.6(5)   | C52  | C47  | B2   | 04   | 48.0(4)   |
| C23  | C18       | C19  | F1   | 179.2(3)  | C52  | C47  | B2   | C53  | -73.6(3)  |
| C23  | C18       | C19  | C20  | -1.0(5)   | C53  | C54  | C55  | F17  | 179.1(3)  |
| C23  | C18       | B1   | 01   | 131.8(3)  | C53  | C54  | C55  | C56  | -2.2(6)   |
| C23  | C18       | B1   | O2   | 14.2(4)   | C54  | C53  | C58  | F20  | 179.6(3)  |
| C23  | C18       | B1   | C24  | -106.6(3) | C54  | C53  | C58  | C57  | -0.8(5)   |
| C24  | C25       | C26  | F7   | -179.3(3) | C54  | C53  | B2   | О3   | 54.9(4)   |
| C24  | C25       | C26  | C27  | 1.4(5)    | C54  | C53  | B2   | 04   | 172.7(3)  |
| C25  | C24       | C29  | F10  | 178.8(3)  | C54  | C53  | B2   | C47  | -66.8(4)  |
| C25  | C24       | C29  | C28  | -2.2(5)   | C54  | C55  | C56  | F18  | -179.3(4) |
| C25  | C24       | B1   | 01   | 9.4(4)    | C54  | C55  | C56  | C57  | 2.5(7)    |
| C25  | C24       | B1   | 02   | 126.8(3)  | C55  | C56  | C57  | F19  | 179.1(4)  |
| C25  | C24       | B1   | C18  | -110.6(3) | C55  | C56  | C57  | C58  | -2.0(7)   |
| C25  | C26       | C27  | F8   | 178.3(3)  | C56  | C57  | C58  | F20  | -179.1(4) |
| C25  | C26       | C27  | C28  | -2.2(6)   | C56  | C57  | C58  | C53  | 1.2(7)    |
| C26  | C27       | C28  | F9   | 179.3(3)  | C58  | C53  | C54  | F16  | -179.8(3) |
| C26  | C27       | C28  | C29  | 0.8(5)    | C58  | C53  | C54  | C55  | 1.3(5)    |
| 220  | <i></i> ' | 2_0  | 3_0  | 3.3(3)    |      | 200  |      | 200  | (0)       |

| Atom | Atom | Atom | Atom | Angle (°) | Atom | Atom | Atom | Atom | Angle (°)  |
|------|------|------|------|-----------|------|------|------|------|------------|
| C27  | C28  | C29  | F10  | -179.5(3) | C58  | C53  | B2   | О3   | -127.4(3)  |
| C27  | C28  | C29  | C24  | 1.5(5)    | C58  | C53  | B2   | 04   | -9.7(4)    |
| C29  | C24  | C25  | F6   | -179.7(3) | C58  | C53  | B2   | C47  | 110.8(3)   |
| C29  | C24  | C25  | C26  | 0.8(5)    | B2   | O3   | C37  | C34  | 162.2(2)   |
| C29  | C24  | B1   | 01   | -171.7(3) | B2   | O3   | C37  | C38  | -19.0(4)   |
| C29  | C24  | B1   | 02   | -54.4(4)  | B2   | 04   | C39  | C38  | 18.5(4)    |
| C29  | C24  | B1   | C18  | 68.3(4)   | B2   | 04   | C39  | C40  | -162.2(2)  |
| B1   | 01   | C8   | C5   | 161.3(2)  | B2   | C47  | C48  | F11  | 4.2(4)     |
| B1   | 01   | C8   | C9   | -18.9(4)  | B2   | C47  | C48  | C49  | -176.3(3)  |
| B1   | 02   | C10  | C9   | 17.9(4)   | B2   | C47  | C52  | F15  | -3.6(4)    |
| B1   | 02   | C10  | C11  | -163.2(2) | B2   | C47  | C52  | C51  | 176.3(3)   |
| B1   | C18  | C19  | F1   | 2.1(4)    | B2   | C53  | C54  | F16  | -1.8(4)    |
| B1   | C18  | C19  | C20  | -178.0(3) | B2   | C53  | C54  | C55  | 179.2(3)   |
| B1   | C18  | C23  | F5   | -2.3(5)   | B2   | C53  | C58  | F20  | 1.8(5)     |
| B1   | C18  | C23  | C22  | 177.6(3)  | B2   | C53  | C58  | C57  | -178.6(4)  |
| B1   | C24  | C25  | F6   | -0.8(5)   | C59  | C60  | C61  | C62  | -175.8(14) |
| B1   | C24  | C25  | C26  | 179.7(3)  | C60  | C61  | C62  | C63  | 160(3)     |
| B1   | C24  | C29  | F10  | -0.2(4)   | C61  | C62  | C63  | C64  | -180.0(14) |
| B1   | C24  | C29  | C28  | 178.7(3)  | C62  | C63  | C64  | C65  | -56(3)     |
| S3   | C31  | C32  | C33  | 179.3(2)  | C66  | C67  | C68  | C69  | -177.7(12) |
| S3   | C31  | C36  | C35  | -179.7(2) | C67  | C68  | C69  | C70  | -178.0(6)  |
| S4   | C43  | C44  | C45  | 179.9(2)  | C68  | C69  | C70  | C71  | -172.8(8)  |
| F11  | C48  | C49  | F12  | -0.1(4)   | C69  | C70  | C71  | C72  | 171.0(9)   |

#### References

- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-
- 2.
- G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, **71**, 3-8. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, **71**, 3-8. 3.
- I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, Acta 4. Crystallogr., Sect. B: Struct. Sci., 2002, 58, 389-397.
- C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van De Streek, J. 5. Appl. Crystallogr., 2006, 39, 453-457
- A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7-13. 6.
- L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen and M. L. Steigerwald, Nano Lett., 2006, 6,
- L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen and M. L. Steigerwald, Nature, 2006, 442, 904-907. 8.
- B. Xu and N. J. Tao, Science, 2003, 301, 1221-1223.
- B. J. van Wees, H. van Houten, C. W. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel and C. T. Foxon, *Phys. Rev. Lett.*, 1988, **60**, 848-850. 10.
- S. G. Balasubramani, G. P. Chen, S. Coriani, M. Diedenhofen, M. S. Frank, Y. J. Franzke, F. Furche, R. Grotjahn, M. 11 E. Harding, C. Hättig, A. Hellweg, B. Helmich-Paris, C. Holzer, U. Huniar, M. Kaupp, A. Marefat Khah, S. Karbalaei Khani, T. Muller, F. Mack, B. D. Nguyen, S. M. Parker, E. Perlt, D. Rappoport, K. Reiter, S. Roy, M. Rückert, G. Schmitz, M. Sierka, E. Tapavicza, D. P. Tew, C. van Wüllen, V. K. Voora, F. Weigend, A. Wodyński and J. M. Yu, *J*. Chem. Phys., 2020, 152, 184107.
- A. D. Becke, Phys. Rev. A, 1988, 38, 3098-3100. 12
- J. P. Perdew, Phys. Rev. B, 1986, 33, 8822-8824. 13.
- F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305. 14.
- 15. F. Pauly, J. K. Viljas, U. Huniar, M. Häfner, S. Wohlthat, M. Bürkle, J. C. Cuevas and G. Schön, New J. Phys., 2008, 10, 125019.
- M. Bürkle, J. K. Viljas, T. J. Hellmuth, E. Scheer, F. Weigend, G. Schön and F. Pauly, Phys. Status Solidi B, 2013, 16. **250**, 2468-2480.
- 17 J. C. Cuevas and E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment, World Scientific, 2nd edn., 2017.
- 18. T. Markussen, C. J. Jin and K. S. Thygesen, Phys. Status Solidi B, 2013, 250, 2394-2402.
- D. J. Mowbray, G. Jones and K. S. Thygesen, J. Chem. Phys., 2008, 128, 111103.
- S. Y. Quek, L. Venkataraman, H. J. Choi, S. G. Louie, M. S. Hybertsen and J. B. Neaton, Nano Lett., 2007, 7, 3477-20.
- L. A. Zotti, M. Bürkle, F. Pauly, W. Lee, K. Kim, W. Jeong, Y. Asai, P. Reddy and J. C. Cuevas, New J. Phys., 2014, 21.
- 22. W. M. Schosser, C. Hsu, P. Zwick, K. Beltako, D. Dulić, M. Mayor, H. S. J. van der Zant and F. Pauly, Nanoscale, 2022, 14, 984-992
- K. Yoshizawa, T. Tada and A. Staykov, J. Am. Chem. Soc., 2008, 130, 9406-9413. 23.
- 24 P. von Ragué Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. van Eikema Hommes, J. Am. Chem. Soc., 1996, **118**, 6317-6318.
- 25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. lyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Rev. B.01, Wallingford CT, 2016.