Supporting Information

Modulation of Biocatalytic Activity and Selectivity of CeO₂ Nanozyme via Atomic Doping Engineering

Shaofang Zhang^a, Haiyan Ruan^b, Qi Xin^a, Xiaoyu Mu^{*,a}, Hao Wang^{*,a}, Xiao-Dong Zhang^{* a,b}

^a Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China

^b Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.

*Correspondence to Xiaodong Zhang, Email: <u>xiaodongzhang@tju.edu.cn</u>. Xiaoyu Mu, Email: <u>muxiaoyu@tju.edu.cn</u>; Hao Wang, Email: <u>hao_wang@tju.edu.cn</u>.

Figure S1. TEM images of (**a**) Mn/CeO₂, (**b**) Co/CeO₂, and (**c**) CeO₂. (**d**) The high-resolution TEM and (**e**) corresponding EDS mapping images of CeO₂. (**f**) The size of CeO₂.

Figure S2. XRD spectra of (a) Mn/CeO₂ and (b) Co/CeO₂ with different doping ratios.

Figure S3. Ratio of Ce^{3+}/Ce^{4+} or $(Ce^{3+}+M^{2+})/Ce^{4+}$ in CeO_2 and M/CeO_2 nanozymes. The results confirmed that the ratios of $(Mn^{2+}+Ce^{3+})/Ce^{4+}$ and $(Co^{2+}+Ce^{3+})/Ce^{4+}$ in M/CeO_2 nanozymes were higher than the Ce^{3+}/Ce^{4+} in undoped CeO_2 nanozymes. The Mn^{2+} or Co^{2+} may accelerate the catalytic rate by participating in catalytic reactions similar to Ce^{3+} , while also promoting the conversion of more Ce^{4+} to Ce^{3+} , which is energetically favorable. For the POD-like activity of CeO_2 , the reaction path is as follows:

$$2TMB+H_2O_2+2H^+ \rightarrow 2TMB^++2H_2O \tag{1-1}$$

$$2Ce^{3+}+H_2O_2+2H^+\rightarrow 2Ce^{4+}+2H_2O$$
 (1-2)

$$Ce^{4+} + TMB \rightarrow Ce^{3+} + TMB^{+}$$
(1-3)

The specific reactions in which Mn^{2+} or Co^{2+} may be involved are speculated as follows:

$$2Mn^{2+}+2H_2O_2+4H^+ \rightarrow 2Mn^{4+}+4H_2O$$
(1-2')

$$2Co^{2+}+H_2O_2+2H^+\rightarrow 2Co^{3+}+2H_2O$$
 (1-2'')

$$Ce^{4+} + TMB \rightarrow Ce^{3+} + TMB^{+}$$
(1-3)

Thus, the doping of Mn^{2+} or Co^{2+} may enhanced the catalytic activity by forming new active sites and participating in catalytic reactions.

Figure S4. Reaction-time curves of the TMB color development reaction catalyzed by (a) CeO_2 , (b) Mn/CeO_2 and (c) Co/CeO_2 with different concentrations.

Figure S5. UV-vis absorption spectra of (**a**) Mn/CeO₂ and (**b**) Co/CeO₂ with different doping ratios.

Figure S6. Reaction-time curves of the decomposition of H_2O_2 catalyzed by (**a**) CeO₂, (**b**) Mn/CeO₂ and (**c**) Co/CeO₂ with different concentrations.

Figure S7. Cytotoxicity of HT22 cells treated with CeO₂ and M/CeO₂ at 0.1-10 μ g/ μ L determined by MTT assays.

Figure S8. Fluorescence microscopic images of intracellular total ROS and O_2 ⁻ levels treated with or without nanozymes using DCFH-DA and DHE fluorescent probes, respectively.

Samples	Ce		0		Mn		Со	
	At.%	Wt.%	At.%	Wt.%	At.%	Wt.%	At.%	Wt.%
CeO ₂	20.8	69.67	79.2	30.33				
Mn/CeO ₂	19.1	65.91	78.4	31.39	2.5	2.8		
Co/CeO ₂	24.1	70.3	70.9	23.6			5.0	6.1

Table S1. Quantification of elemental contents of CeO_2 and M/CeO_2 nanozymes by EDS element mapping.