Supporting Information

Synthesis of $ZnTPyP/WO_3$ nanorod-on-nanorod heterojunctions direct Z-scheme with spatial charge separation ability for enhanced photocatalytic hydrogen generation

Shuanghong Liu,^a Siyu Xia,^a Jiefei Wang,^b Xitong Ren,^a Sudi Chen,^a Yong Zhong,^{*a} Feng Bai^{*a}

^a Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint

Engineering Research Center for High-efficiency Display and Lighting Technology, School of

Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials

and Applications, Henan University, Kaifeng 475004, P. R. China;

^b International Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, P. R. China;

E-mail addresses: zhywy8521115@163.com (Y. Zhong), baifengsun@126.com (F. Bai).

Figure S1. SEM images of (a) pure ZnTPyP nanorods (pH = 8.6) and (b) WO₃ nanorods.

Figure S2. TEM of ZnTPyP/WO₃ were prepared under different pH: (a) pH=3.06, (b) pH=8.83, (c) pH=10.96, (d) pH=11.82.

Figure S3. TEM images of ZnTPyP/WO₃ nanorod-on-nanorod heterojunctions prepared in different surfactant type: (a) SDS and (b) MTAB.

Figure S4. Nitrogen adsorption-desorption isotherm curve of the ZnTPyP nanorod, WO_3 nanorod and ZnTPyP/WO₃ nanorod-on-nanorod heterojunctions.

Figure S5. Thermogravimetric analysis (TGA) curve for the ZnTPyP nanorod, WO_3 nanorod and ZnTPyP/WO₃ nanorod-on-nanorod heterojunctions.

Figure S6. UV-vis diffuse reflectance spectra (DRS) of pure WO_3 nanorods, ZnTPyP nanorods, and ZnTPyP/WO₃ (26.1 wt %).

Figure S7. (a) Photograph of pure WO₃ nanorods, ZnTPyP nanorods, ZnTPyP/WO₃ (26 wt %), and ZnTPyP/WO₃ treated with HCl aqueous solution. (b) TEM of WO₃@ZnTPyP core-shell treated with NaOH. (c) TEM of ZnTPyP/WO₃ treated with HCl. (d) XRD of ZnTPyP/WO₃ treated with HCl (red) and NaOH (black). (e) Corresponding FT-IR of ZnTPyP powder, ZnTPyP nanorods, and HCl-treated ZnTPyP/WO₃.

Figure S8. Fluorescence spectra of pure WO_3 nanorods, ZnTPyP nanorods, and ZnTPyP/ WO_3 (26.1 wt %), E_x : 420 nm.

Figure S9. Representative gas chromatograph (GC) results of 1 mg photocatalysis using 50 mL different sacrificial electron donor solution with 1 wt% Pt loading: (a) 10 vol% triethanolamine (TEOA) aqueous solution, (b) 10 vol% of CH₃OH aqueous solution and (c) 0.35 M Na₂S/0.25 M Na₂SO₃ aqueous solution.

Figure S10. TEM of ZnTPyP/WO $_3$ nanorod-to-nanorod nanostructures with 1 wt.% Pt co-catalyst loading.

Figure S11. STEM of ZnTPyP/WO $_3$ nanorod-to-nanorod nanostructures with 5 wt.% Pt co-catalyst loading.