Supplementary information

Narrow-bandgap Sn-Pb Mixed Perovskite Single Crystal for High-performance

Near-Infrared Photodetector

Zhizhen Chang,^{‡a} Zhengjun Lu,^{‡a} Wei Deng,^{*a} Yandi Shi,^a Yuye Sun,^a Xiujuan

Zhang,*a and Jiansheng Jie*ab

aInstitute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory

for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou,

Jiangsu 215123, China. Email: dengwei@suda.edu.cn; xjzhang@suda.edu.cn; jsjie@suda.edu.cn

^bMacao Institute of Materials Science and Engineering, Macau University of Science

and Technology, Taipa, Macau SAR 999078, P. R. China

‡These authors contributed equally: Zhizhen Chang, Zhengjun Lu

Number	Materials	FWHM (°)	References
1	Cs ₂ AgBiBr ₆	0.061	30
2	MAPbBr ₃	0.042	31
3	(PEA) ₂ PbI ₄	0.1055	32
4	CsPbBr ₃	0.13	33
5	MAPbBr ₃	0.013	34
6	MAPbBr ₃	0.019	35
7	MAPbI ₃	0.06	36
8	MAPbCl ₃	0.0447	37
9	MAPbBr ₃	0.0096	38
10	MAPbCl _{0.7} Br _{2.3}	0.016	39
11	CsPbBr ₃	0.0042	40
12	(FASnI ₃) _{0.1} (MAPbI ₃) _{0.9}	0.033	Our work

Table S1. Comparison of full-width at half-maximum of the $(FASnI_3)_{0.1}(MAPbI_3)_{0.9}$ single crystal with previously reported perovskite single crystals.

Number	Materials	LDR	References
1	$(FASnI_3)_{0.6}(MAPbI_3)_{0.4}$	160	13
2	$MA_{0.975}Rb_{0.025}Sn_{0.65}Pb_{0.35}I_3$	110	15
3	$PEA_{2}MA_{4}(Sn_{0.5}Pb_{0.5})_{5}I_{16}$	158	17
4	$FA_{0.85}Cs_{0.15}Sn_{0.5}Pb_{0.5}I_3$	103	20
5	$(FASnI_3)_{0.1}(MAPbI_3)_{0.9}$	163.5	Our work

Table S2. Comparison of LDR of $(FASnI_3)_{0.1}(MAPbI_3)_{0.9}$ single crystal NIR photodetector with previous Sn-Pb mixed perovskite devices.

Figure S1. Schematic illustration of FTS treatment procedure. In this process, glass substrate was placed in the environment of FTS vapor to realize a hydrophobic surface with low surface energy.

Figure S2. Zoom-in SEM image of the surface of the as-grown $(FASnI_3)_{0.1}(MAPbI_3)_{0.9}$ single crystal.

Figure S3. SEM images of the spin-coated (FASnI₃)_{0.1}(MAPbI₃)_{0.9} polycrystalline film, indicating abundant of grain boundaries and defects.

Figure S4. AFM image of the $(FASnI_3)_{0.1}(MAPbI_3)_{0.9}$ polycrystalline film, which indicates a large RMS of 161.44 nm.

Figure S5. (a) SEM image and (b) corresponding absorption spectra of $(FASnI_3)_{0.2}(MAPbI_3)_{0.8}$ single crystal. (c) SEM image and (d) corresponding absorption spectra of $(FASnI_3)_{0.3}(MAPbI_3)_{0.7}$ single crystal.

Figure S6. X-ray diffraction pattern of the (FASnI₃)_{0.1}(MAPbI₃)_{0.9} polycrystalline film, indicating multiple out-plane peaks.

Figure S7. Current-voltage characteristics of the (FASnI₃)_{0.1}(MAPbI₃)_{0.9} single crystal NIR photodetector performed under dark condition and 808 nm light illumination by varying light intensities.

Figure S8. Long-term stability of the $(FASnI_3)_{0.1}(MAPbI_3)_{0.9}$ single crystal NIR photodetector under light illumination.

Figure S9. Fast Fourier transform of the PPG signals under at normal (a) and afterexercise (b) conditions.

Calculation of hole mobility and surface trap density

The $(FASnI_3)_{0.1}(MAPbI_3)_{0.9}$ single crystal has excellent carrier mobility and low trap density. To verify this point, we carried out the space charge-limited current (SCLC) measurements. For SCLC method in lateral devices, a gap-type device was fabricated using single crystal with Au electrodes with channel width and length of 180 and 300 µm. From the *I-V* curve (Fig. 3c), we could obtain the carrier mobility for gap-type devices by the Geurst's SCLC model:¹

$$I = \frac{2\mu\varepsilon_0\varepsilon_r W}{\pi} \left(\frac{V^2}{L^2}\right)$$

According to the Geurst theory the onset voltage (V_{TFL}) for a gap-type structure was equal to²

$$V_{TFL} = \frac{\pi \sigma_0 L}{4\varepsilon_0 \varepsilon_r}$$

where μ is the carrier, σ_0 is the surface trap density per unit area, ε_0 is the vacuum permittivity and ε_r is relative dielectric constant of (FASnI₃)_{0.1}(MAPbI₃)_{0.9} perovskite, 32.

- Liu, Y. et al. Fast growth of thin MAPbI₃ crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells. *Adv. Funct. Mater.*, 2019, 29, 1807707.
- 2. Zuleeg, R. & Knoll, P. Space-charge-limited currents in heteroepitaxial films of silicon grown on sapphire. *Appl Phys. Lett.*, 1967, **11**, 183-185.