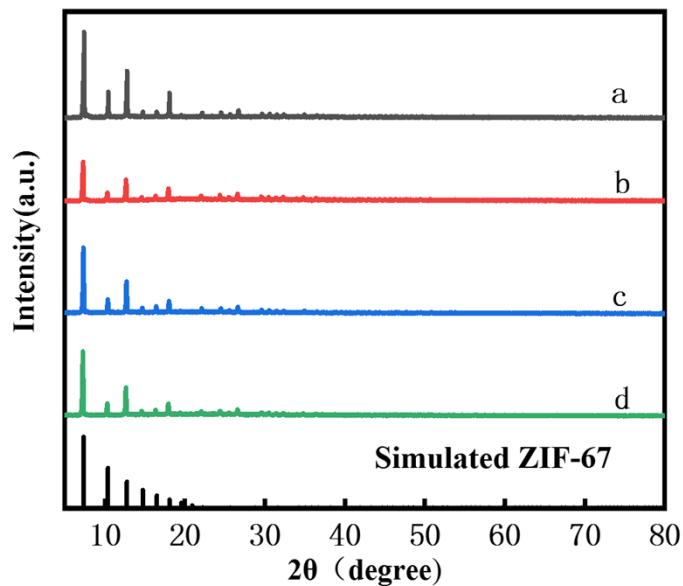
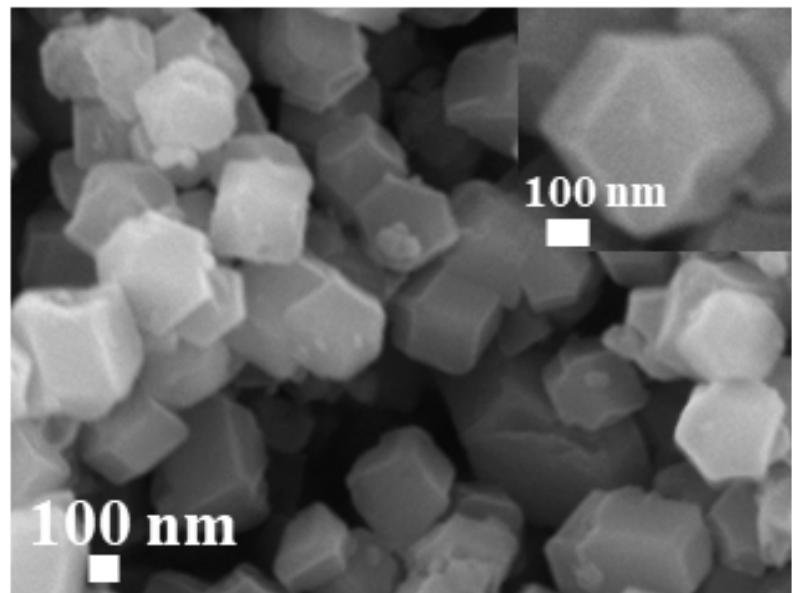


Supplementary Information


Boosting catalytic performance of Co-N-C derived from ZIF-67 by mesoporous silica encapsulation for chemoselective hydrogenation of furfural

Jianbo Zhao,^{1,*} Xiaomeng Li,¹ Meng Zhang,¹ Zuo Xu,¹ Xiaomei Qin,¹ Yingfan Liu,¹ Lifeng Han,² Gao Li^{3,*}

¹ School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China


² Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China

³ State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China

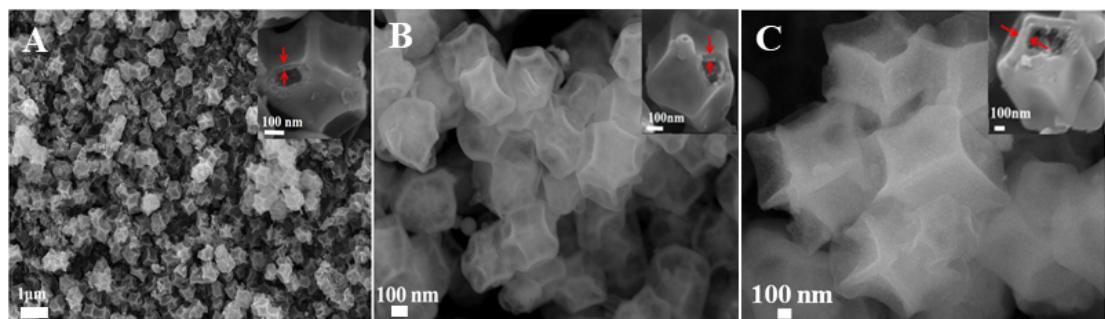
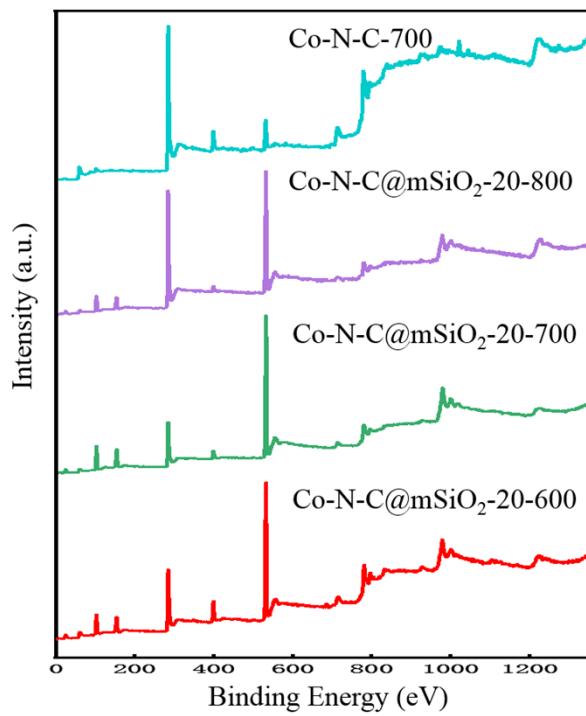
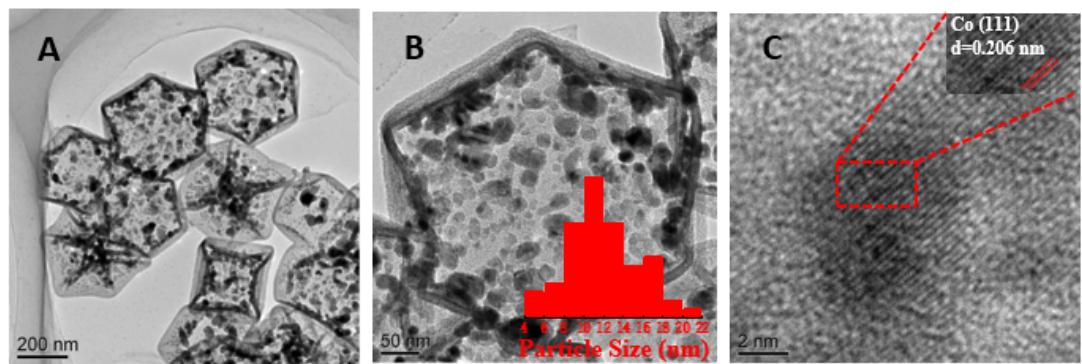
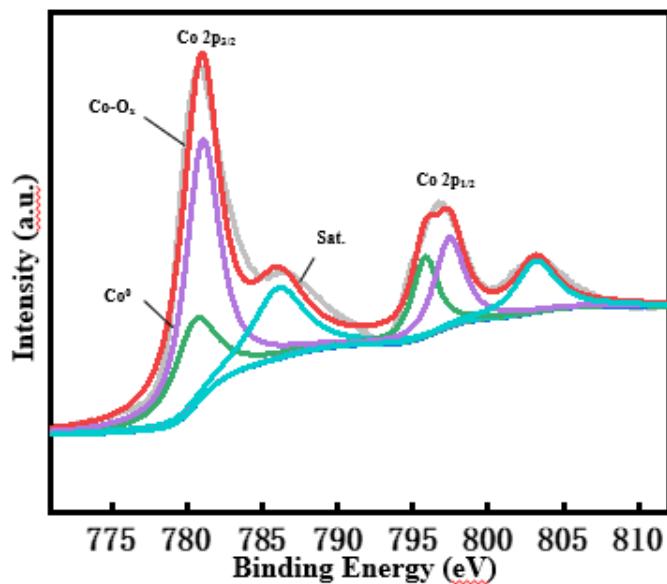


Fig. S1. XRD patterns of ZIF-67 and ZIF-67@SiO₂: (a) ZIF-67, (b) ZIF-67@SiO₂-20, (c) ZIF-67@SiO₂-50, (d) ZIF-67@SiO₂-100.


Figure S1 showed the peaks at 7.5°, 10.6°, 12.9° and 18.3°, in good agreement with the simulated characteristic peaks of ZIF-67, showing the successful formation of ZIF-67. The XRD pattern of ZIF-67@SiO₂ showed the typical peaks of pure ZIF-67, suggesting that the crystallinity of ZIF-67 was maintained after the coating of silica from hydrolysis of TEOS.


Fig. S2. SEM image of ZIF-67.


Fig. S3. SEM images: (A) Co-N-C@mSiO₂-20-600, (B) Co-N-C@mSiO₂-50-600, and (C) Co-N-C@mSiO₂-100-600.

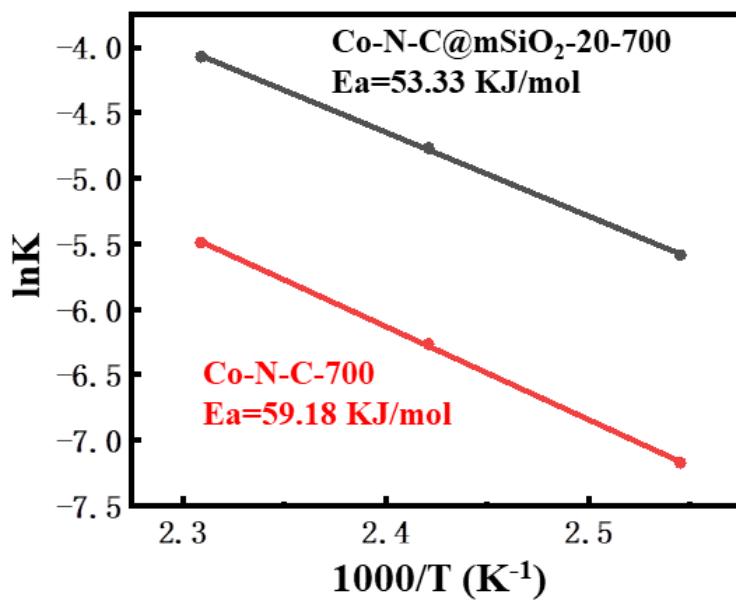

Fig. S4. Full XPS survey spectra of samples.

Fig. S5. Co@mSiO₂-20: (A,B) TEM images and (C) HRTEM image.



Fig. S6. Co 2p XPS spectra of Co@mSiO₂-20. The deconvolved peaks in Co 2p spectra were ascribed to metallic Co⁰, Co-O_x, and satellite peak, respectively. No Co-N_x species was found.

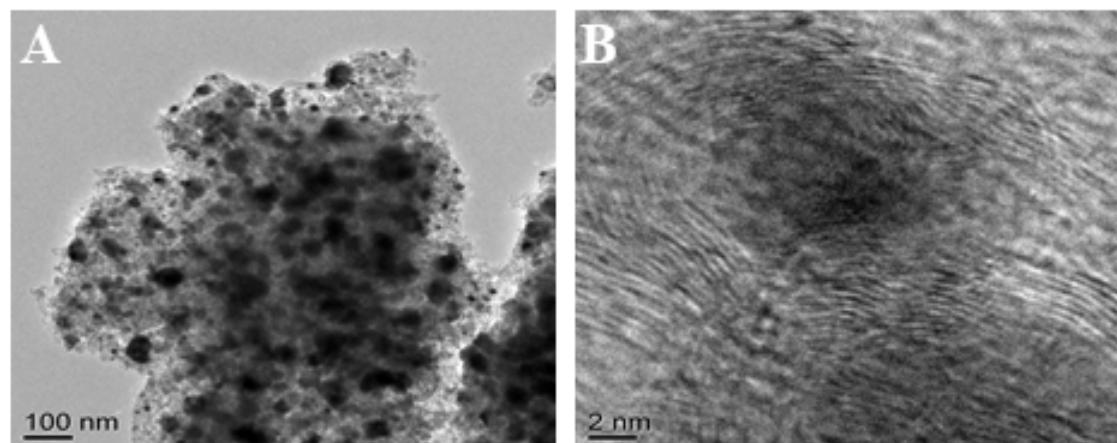


Fig. S7. Arrhenius plots for furfural hydrogenation over CoN_x-C@mSiO₂-20-700 and Co@N-C-700 catalysts. Other reaction conditions: furfural, 1 mmol; 2-Propanol, 3 mL; catalyst, 0.005 g; stirring speed, 500 rpm.

Spent catalysts

Fig. S8. XRD patterns of spent $\text{CoN}_x\text{-C@mSiO}_2\text{-20-700}$.

Fig. S9. TEM images of spent $\text{CoN}_x\text{-C@mSiO}_2\text{-20-700}$.

Table S1. The Co valence and content of Co catalysts were determined by XPS.

Catalysts	Co ⁰ (%)	Co-O _x (%)	Co-N _x (%)
Co@N-C-700	42.6	34.1	23.3
Co-N-C@mSiO ₂ -20-600	38.9	37.1	24.0
Co-N-C@mSiO ₂ -20-700	27.2	41.8	31.0
Co-N-C@mSiO ₂ -20-800	32.8	39.4	27.8

Table S2. The specific surface area and pore volume of Co catalysts were determined by BET.

Catalysts	BET Surface Area	Pore Volume	pore size (nm)
	(cm ² /g)	(cm ³ /g)	
Co@N-C-700	174.2	0.15	3.83
Co-N-C@mSiO ₂ -20-600	207.2	0.35	3.88
Co-N-C@mSiO ₂ -20-700	296.2	0.37	3.94
Co-N-C@mSiO ₂ -20-800	291.9	0.35	3.90

Table S3. Comparison of catalytic performance over non-precious metal catalysts in the hydrogenation of furfural to furfuryl alcohol.

Entry	Catalyst	T/ °C	P _{H2} /MPa	Solvent	Con. /%	Sel. /%	TO F /h ⁻¹	Ref.
1	Co/SBA-15	150	2	ethanol	92	96	1.0	[1]
2	Cu-Co/SBA-15	170	2	2-propanol	99	80	7.6	[2]
3	Co/NC-400-6	180	2	2-propanol	99	22	---	[3]
4	NiCoZn@NC-600	160	2	THF	86	>99	---	[4]
5	CuCo _{0.4} /C-873	140	3	ethanol	99	98	--	[5]
6	2%Ni-5%Cu/SiO ₂	100	2	methanol	94	64	1.3	[6]
7	Cu-Cr	110	1	2-propanol	48	100	1.3	[7]
8	CuNi/MgAlO	100	4	methanol	99	99	15	[8]
9	Ni ₃ Fe ₁ /SiO ₂	140	3.4	methanol	100	96	49	[9]
10	Co-N-C@mSiO ₂ -20-700	140	1	2-propanol	95	89	13	This work

Table S4. TOFs of metal Co and CoNx active sites.

Catalysts	d _{TEM} ^a /nm	Con. ^b /%	TOF ^c /h ⁻¹	X _{CoNx} ^d /%	TOF _{Co} /h ⁻¹	TOF _{Co-Nx} /h ⁻¹
Co@SiO ₂	11.3	2.3	1.2	-	1.2	--
Co-N-C@mSiO ₂ -20-700	9.0	20.5	12.9	31.0	1.2	39

^a Co particle size was determined by TEM. ^b Conversion of furfural (Con.) was tested by GC. ^c Conversion of furfural was tested by GC. ^dX_{CoNx} was the proportion of CoNx calculated by XPS.

Here TOF_{CoNP} of metal Co was assumed to be equal for Co@SiO₂ and CoNx-C@mSiO₂-20-700. The TOF of Co-N-C@mSiO₂-20-700 was defined as the total activity of metal Co and Co-N_x species. The TOF of Co-N_x species was obtained as follows:

$$\text{TOF}_{\text{CoNx}} = \frac{\text{TOF} - \text{TOF}_{\text{CoNP}} \times (1 - X_{\text{CoNx}})}{X_{\text{CoNx}}}$$

Reference

- [1] M. Audemar, C. Ciotonea, K.D. Vigier, S. Royer, A. Ungureanu, B. Dragoi, E. Dumitriu and F. Jerome, *ChemSusChem*, 2015, **8**, 1885-1891.
- [2] S. Srivastava, P. Mohanty, J.K. Parikh, A.K. Dalai, S.S. Amritphale and A.K. Khare, *Chinese. J. Catal.*, 2015, **36**, 933-942.
- [3] J.G. Lee, S. Yoon, E. Yang, J.H. Lee, K. Song, H.R. Moon and K. An, *J. Catal.*, 2020, **392**, 302-312.
- [4] S.J. Li, Y.F. Fan, C.H. Wu, C.F. Zhuang, Y. Wang, X.M. Li, J. Zhao and Z.F. Zheng, *ACS Appl. Mater. Interfaces*, 2021, **13**, 8507-8517.
- [5] Y. Wang, Y.N. Miao, S. Li, L.J. Gao and G.M. Xiao, *Mol. Catal.*, 2017, **436**, 128-137.
- [6] P. Weerachawanasak, P. Krawmanee, W. Inkamhaeng, F.J.C.S. Aires, T. Sooknoi and J. Panpranot, *Catal. Commun.*, 2021, **149**, 106221.
- [7] M.M. Villaverde, N.M. Bertero, T.F. Garetto and A.J. Marchi, *Catal. Today*, 2013, **213**, 87-92.
- [8] J. Wu, G. Gao, J. L. Li, P. Sun, X.D. Long and F. W. Li, *Appl. Catal. B-Environ.*, 2017, **203**, 227-236.
- [9] P. Jia, X. C. Lan, X. D. Li and T.F. Wang, *ACS Sustainable Chem. Eng.*, 2018, **6**, 13287-13295.