Constructing imine groups on the surface of $Cu_1/Pd(111)$ as a novel strategy for CO_2 hydrogenation to methanol

Sanmei Wang,^{a,b} Qi Li,^a Yue Xin,^a Sunpei Hu,^b Xiaoxi Guo,^a Yong Zhang,^c Ling Zhang,^d Bingang Chen,^{*d} Wenhua Zhang,^{*b} Liangbing Wang^{*a}

^a State Key Laboratory for Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083

^b Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Centre of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026

^c Qinghai Oilfield New Energy Division, Dunhuang, Gansu, 736202

^d Ningbo Fengcheng Advanced Energy Materials Research Institute Co., Ltd., Fenghua District, Ningbo, Zhejiang, 315500

The calculation details for the catalytic activity of Cu(111), Pd_3Cu_6 , Pd_6Cu_3 , Pd-ML, and Pd(111) for CO₂ hydrogenation to CH₃OH

The structures of the Cu(111), Pd₃Cu₆, Pd₆Cu₃, and Pd-ML in Fig. 1a were obtained from ref.32. The size for the Cu(111), Pd₃Cu₆, Pd₆Cu₃, and Pd-ML structure were fourlayer slabs with (3×3) unit cells (Fig. S1[†]). Ref. 32 showed that the rate-determining step for CO₂ hydrogenation to CH₃OH over Cu(111), Pd₃Cu₆, Pd₆Cu₃ were the hydrogenation of CO₂ to COOH. For Pd-ML, the the rate-determining step was the O-O bond breaking of the COOH intermediates. To increase the comparability and reduce the computational cost, we recalculated the rate-determining step energy barrier using the parameters of the computational method. Thus, all structures in Fig. 1a were calculated using the same method. The free energy profiles for CO₂ hydrogenation to CH₃OH over Pd(111) was shown in Fig. S2[†].

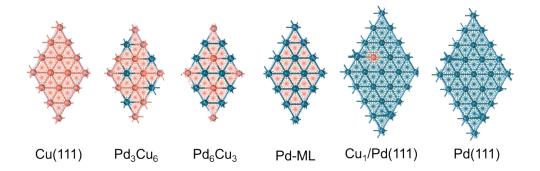


Fig. S1 The various Pd-Cu structures. The cyan and yellow spheres represented Pd and Cu atoms, respectively.

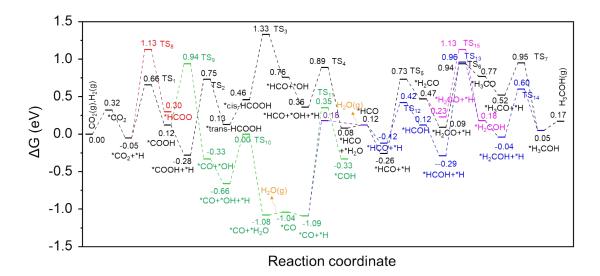


Fig. S2 The free energy profiles for CO_2 hydrogenation to CH_3OH over Pd(111). The black route was the most possible reaction pathway for CO_2 hydrogenation to CH_3OH over Pd(111). TS represented the transition state.

The possible adsorption configuration for CO_2 on $C_3H_4O@NH_2-Cu_1/Pd(111)$

We established a large number of structures to detect whether CO₂ tended to be adsorbed via the interaction between the C of CO₂ and the N of imine groups. The calculation results indicated that CO₂ was difficult to interact with amine groups on NH₂- $Cu_1/Pd(111)$, $C_2H_4O@NH_2-Cu_1/Pd(111)$, and $C_3H_6O@NH_2-Cu_1/Pd(111)$ due to steric hindrances. Nevertheless, for C₃H₄O@NH₂-Cu₁/Pd(111), CO₂ was able to chemically adsorb on amines by its C atoms bonded to N of amine groups (Fig.S3a[†]). The adsorption energy of CO_2 in this configuration was -0.22 eV, which was close to that of CO_2 completely adsorbed on Pd atoms (-0.20 eV) (Fig.S3b[†]). In addition, the adsorption configurations where C and O of CO₂ were bonded to N of amine groups and Pd atoms, respectively, were also considered. Fig.S3c[†] illustrated that the adsorption energy of CO₂ in this configuration was -0.27 eV, which was still close to that of CO₂ completely adsorbed on Pd atoms (-0.20 eV). The results indicated that the N atoms of imines and the Pd atoms next to the imines were possible adsorption sites for CO₂. Nevertheless, CO₂ adsorbed entirely on Pd was more conducive to its binding with H to generate CH₃OH than CO₂ adsorbed on imines. Thus, the most optimal adsorption configuration for CO₂ hydrogenation to CH₃OH on C₃H₄O@NH₂-Cu₁/Pd(111) was CO₂ adsorbed entirely on Pd atoms.

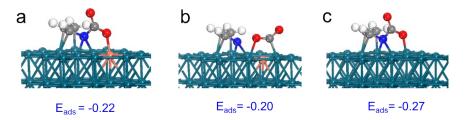


Fig. S3 The possible adsorption configuration of CO_2 on $C_3H_4O@NH_2-Cu_1/Pd(111)$. The cyan, grey, white, blue, red, and yellow spheres represented Pd, C, H, N, O, and Cu atoms,

respectively.

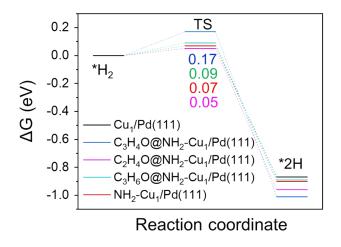


Fig. S4 The dissociation of H₂ on various structures. TS represented the transition state.

Table S1 The free energy barriers (eV) of elementary steps for CO₂ hydrogenation to CH₃OH over Cu₁/Pd(111), NH₂-Cu₁/Pd(111), C₂H₄O@NH₂-Cu₁/Pd(111), C₃H₄O@NH₂-Cu₁/Pd(111), Cu₁/Pd(111), and C₃H₆O@NH₂-Cu₁/Pd(111).

No.	Reactions	Cu ₁ /	NH ₂ -	C ₂ H ₄ O@	C ₃ H ₄ O	C ₃ H ₆ O
		Pd(111)	Cu ₁ /	NH ₂ -Cu ₁ /	@NH ₂ -	@NH ₂ -
			Pd(111)	Pd(111)	Cu ₁ /	Cu ₁ /
					Pd(111)	Pd(111)
R ₁	CO_2 *+*H→*COOH	0.63	0.59	0.59	0.56	0.56
R ₂	CO_2 *+*H→*HCOO	0.76	0.74	0.76	0.90	0.80
R ₃	*СООН→*СО+*ОН	1.42	1.47	0.72	0.80	0.80
R ₄	*CO+*OH+*H \rightarrow *CO+ *H ₂ O	0.60	0.64	0.53	0.95	0.61
R ₅	*СО+*Н→*СОН	1.86	1.43	1.52	1.41	1.40
R ₆	*CO+*H→*HCO	1.95	1.15	1.20	1.35	1.24
R ₇	*COOH+*H→*trans- HCOOH	1.00	0.88	0.78	0.62	0.86
R ₈	*trans-HCOOH→*cis- HCOOH	0.81	0.55	0.59	0.60	0.74
R9	*cis- HCOOH→*HCO+*OH	0.62	0.47	0.43	0.62	0.74
R ₁₀	*HCO+*OH+*H→*H CO+*H ₂ O	0.74	0.80	0.47	0.48	0.69
R ₁₁	*НСО+*Н→*НСОН	0.60	0.57	0.54	0.66	0.78
R ₁₂	*HCOH+*H→*H ₂ CO H	1.48	0.72	1.03	0.65	0.82
R ₁₃	*H ₂ COH+*H→*H ₃ CO Н	0.70	0.74	0.62	0.61	0.71
R ₁₄	*HCO+*H \rightarrow *H ₂ CO	0.90	1.01	0.79	0.83	0.68
R ₁₅	*H ₂ CO+*H→*H ₂ COH	1.32	0.81	0.89	0.45	0.84
R ₁₆	*H ₂ CO+*H→*H ₃ CO	0.72	0.75	0.78	0.82	0.62
R ₁₇	*H ₃ CO+*H→*H ₃ COH	0.29	0.30	0.55	0.36	0.26

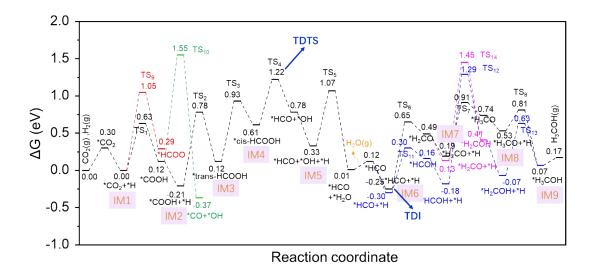
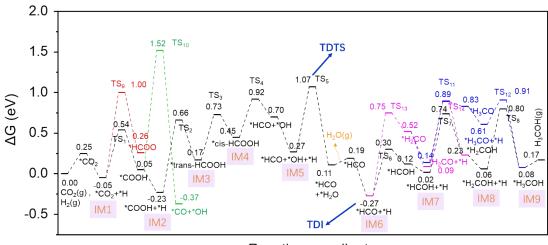
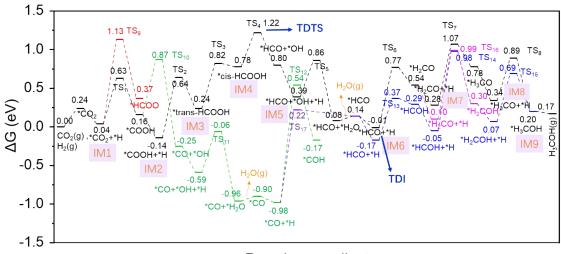




Fig. S5 The free energy profiles for CO_2 hydrogenation to CH_3OH over $Cu_1/Pd(111)$. The black route was the most possible reaction pathway for CO_2 hydrogenation to CH_3OH over $Cu_1/Pd(111)$. TS represented the transition state. IM represented the intermediates used to calculate the X_{TOF} .

Reaction coordinate

Fig. S6 The free energy profiles for CO_2 hydrogenation to CH_3OH over $NH_2-Cu_1/Pd(111)$. The black route was the most possible reaction pathway for CO_2 hydrogenation to CH_3OH over $NH_2-Cu_1/Pd(111)$. TS represented the transition state. IM represented the intermediates used to calculate the X_{TOF} .

Reaction coordinate

Fig. S7 The free energy profiles for CO_2 hydrogenation to CH_3OH over $C_2H_4O@NH_2-Cu_1/Pd(111)$. The black route was the most possible reaction pathway for CO_2 hydrogenation to CH_3OH over $C_2H_4O@NH_2-Cu_1/Pd(111)$. TS represented the transition state. IM represented the intermediates used to calculate the X_{TOF} .

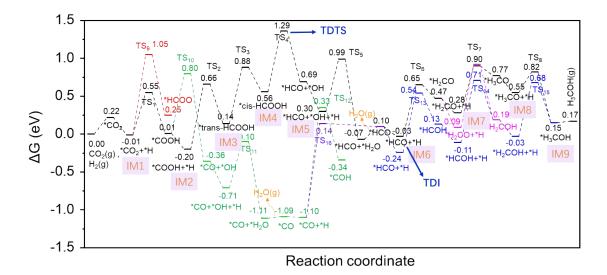


Fig. S8 The energy profiles for CO_2 hydrogenation to CH_3OH over $C_3H_6O@NH_2-Cu_1/Pd(111)$. The black route was the most possible reaction pathway for CO_2 hydrogenation to CH_3OH over $C_3H_6O@NH_2-Cu_1/Pd(111)$. TS represented the transition state. IM represented the intermediates used to calculate the X_{TOF} .

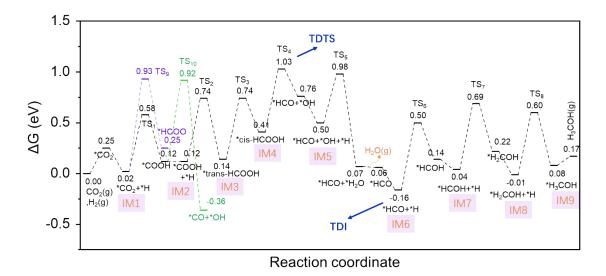
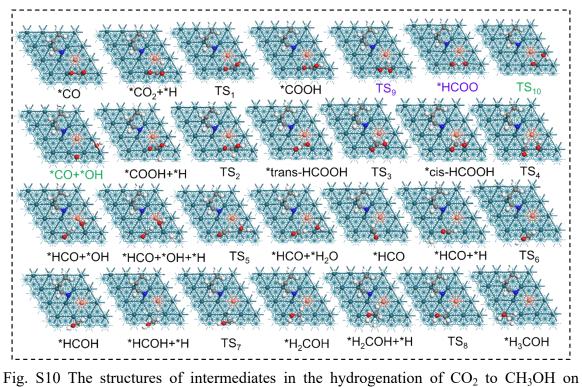



Fig. S9 The free energy profiles for CO_2 hydrogenation to CH_3OH over $C_3H_4O@NH_2-Cu_1/Pd(111)$. IM represented the intermediates used to calculate the X_{TOF} .

 $C_3H_4O@NH_2-Cu_1/Pd(111)$. The cyan, grey, white, blue, red, and yellow spheres represented Pd, C, H, N, O, and Cu atoms, respectively.

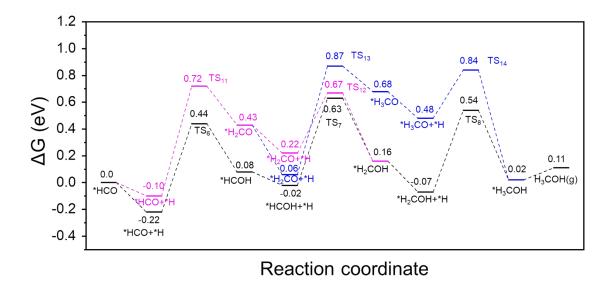


Fig. S11 The possible reaction paths from HCO intermediates hydrogenation to CH_3OH over $C_3H_4O@NH_2-Cu_1/Pd(111)$.

Energetic span model

The energetic span model proposed by Kozuch^{S1-S2} were used to estimate turnover frequency (TOF). Energetic span model theory suggested that the energy span (δE) determined the reaction rate in the catalytic cycle of multi-element steps, rather than the step with the highest activation energy. δE can be obtained by TOF-determining intermediate (TDI) and TOF-determining transition state (TDTS). The Gibbs free energy difference of the total reaction was named as ΔGr . When $\Delta Gr < 0$, the approximate relation between TOF and energy span δE can be simplified to

$$TOF = \frac{k_B T}{h} exp^{[m]}(-\frac{\delta E}{RT})$$
(1)
$$\delta E = \begin{cases} T_{TDTS} - I_{TDI} & \text{if TDTS appears after TDI} \\ T_{TDTS} - I_{TDI} + \Delta G_r & \text{if TDTS appears before TDI} \end{cases}$$
(2)

Where K_B is Boltzmann constant, *T* is temperature, and R is the ideal gas constant. To locate the determining states, we can calculate the degree of TOF control for transition states and intermediates ($X_{TOF,T}$ and $X_{TOF,I}$). The states with the highest X_{TOF} corresponded to the TDTS and TDI.^{S3}

$$X_{TOF, T_i} = \frac{\sum_{j} exp^{[m]} [(T_i - I_j - \Delta G_{ij})/RT]}{\sum_{i j} exp^{[m]} [(T_i - I_j - \Delta G_{ij})/RT]}$$
(3)

$$X_{TOF, T_{j}} = \frac{\sum_{i} exp^{[m]}[(T_{i} - I_{j} - \Delta G_{ij})/RT]}{\sum_{i j} exp^{[m]}[(T_{i} - I_{j} - \Delta G_{ij})/RT]}$$

$$\Delta G_{ij} = \begin{cases} \Delta G_{r, i} > j, \\ 0, i \leq j. \end{cases}$$
(4)

Where I_i and T_i symbolized the standard-state Gibbs energies of the *i*th intermediate or transition state. The X_{TOF} of the *i*th intermediate and transition states on Cu₁/Pd(111), NH₂-Cu₁/Pd(111), C₂H₄O@NH₂-Cu₁/Pd(111), C₃H₄O@NH₂-Cu₁/Pd(111) and C₃H₆O@NH₂-Cu₁/Pd(111) were displayed in Table S2, Table S3, Table S4, Table S5, and Table S6,

respectively. We only considered the X_{TOF} of intermediates and transition states in the optimal pathway. X_{TOF} showed that for NH₂-Cu₁/Pd(111), the TDI and TDTS were IM6 and TS₅, respectively. For Cu₁/Pd(111), C₂H₄O@NH₂-Cu₁/Pd(111), C₃H₄O@NH₂-Cu₁/Pd(111), C₃H₆O@NH₂-Cu₁/Pd(111), C₃H₆O@NH₂-Cu₁/Pd(111), the TDI and TDTS were IM6 and TS₄, respectively. It was noted that the X_{TOF} of IM2 and IM6 in C₃H₆O@NH₂-Cu₁/Pd(111) were the same. COOH intermediate hydrogenated to trans-HCOOH intermediate was endothermic 0.34 eV, while HCO intermediate hydrogenated to H₂CO intermediate was endothermic 0.50 eV. The result indicated that IM6 had a more significant effect on the whole reaction than IM2. Thus, we chose IM6 as the TDI for CO₂ hydrogenation to CH₃OH on C₃H₆O@NH₂-Cu₁/Pd(111). After TDI and TDTS were determined, δ E can be calculated according to equation (2). The δ E for Cu₁/Pd(111), NH₂-Cu₁/Pd(111), C₂H₄O@NH₂-Cu₁/Pd(111), and C₃H₆O@NH₂-Cu₁/Pd(111) were 1.47, 1.34, 1.23, 1.19, and 1.32 eV, respectively.

	IM1	IM2	IM3	IM4	IM5	IM6	IM7	IM8	IM9	X _{tof} , T _i
T ₁	3.34E+10	1.07E+14	3.30E+08	2.16E+00	1.03E+05	5.00E+14	2.24E+07	4.68E+01	2.26E+09	1.69E-10
T ₂	1.55E+10	3.44E+16	1.06E+11	6.91E+02	3.29E+07	1.60E+17	7.16E+09	1.50E+04	7.24E+11	5.41E-08
T ₃	4.95E+12	1.59E+16	3.39E+13	2.21E+05	1.05E+10	5.13E+19	2.29E+12	4.80E+06	2.32E+14	1.43E-05
T_4	3.46E+17	1.11E+21	3.42E+15	1.55E+10	7.35E+14	3.58E+24	1.60E+17	3.35E+11	1.62E+19	9.97E-01
Ts	1.08E+15	3.48E+18	1.07E+13	6.98E+04	2.29E+12	1.12E+22	5.00E+14	1.05E+09	5.05E+16	3.11E-03
T ₆	1.04E+08	3.35E+11	1.03E+06	6.74E-03	3.20E+02	1.08E+15	4.83E+07	1.01E+02	4.88E+09	3.00E-10
T ₇	2.29E+12	7.39E+15	2.27E+10	1.48E+02	7.05E+06	3.44E+16	1.06E+12	2.23E+06	1.07E+14	1.17E-08
T ₈	4.90E+10	1.58E+14	4.85E+08	3.17E+00	1.51E+05	7.35E+14	3.29E+07	4.75E+04	2.29E+12	2.49E-10
X_{TOF} , I_j	9.65E-08	3.11E-04	9.64E-10	4.30E-15	2.05E-10	1.00E+00	4.47E-08	9.35E-14	4.52E-06	

Table S2 The X_{TOF} of intermediates and transition states on Cu₁/Pd(111).

	IM1	IM2	IM3	IM4	IM5	IM6	IM7	IM8	IM9	X _{tof} , T _i
T ₁	7.16E+09	7.27E+12	1.51E+06	3.19E+01	3.24E+04	3.39E+13	4.85E+08	1.04E+08	4.83E+07	1.70E-09
T ₂	1.05E+09	7.35E+14	1.53E+08	3.22E+03	3.27E+06	3.42E+15	4.90E+10	1.05E+10	4.88E+09	1.72E-07
T ₃	1.55E+10	1.57E+13	2.26E+09	4.75E+04	4.83E+07	5.05E+16	7.24E+11	1.55E+11	7.20E+10	2.09E-06
T ₄	2.31E+13	2.34E+16	4.88E+09	7.09E+07	7.20E+10	7.54E+19	1.08E+15	2.32E+14	1.07E+14	3.11E-03
Ts	7.39E+15	7.50E+18	1.56E+12	3.29E+07	2.31E+13	2.41E+22	3.46E+17	7.42E+16	3.44E+16	9.97E-01
T ₆	1.02E+03	1.03E+06	2.15E-01	4.52E-06	4.59E-03	3.32E+09	4.75E+04	1.02E+04	4.73E+03	1.37E-13
T ₇	2.27E+10	2.31E+13	4.80E+06	1.01E+02	1.03E+05	1.07E+14	1.06E+12	2.28E+11	1.06E+11	5.44E-09
T ₈	2.28E+11	2.32E+14	4.83E+07	1.02E+03	1.03E+06	1.08E+15	1.55E+10	2.29E+12	1.06E+12	5.43E-08
X _{TOF} , I _j	3.06E-07	3.11E-04	6.48E-11	4.28E-15	9.55E-10	1.00E+00	1.43E-05	3.07E-06	1.42E-06	

Table S3 The X_{TOF} of intermediates and transition states on NH₂-Cu₁/Pd(111).

	IM1	IM2	IM3	IM4	IM5	IM6	IM7	IM8	IM9	X _{TOF} , T _i
T ₁	7.16E+09	7.27E+12	3.27E+06	3.12E-03	1.02E+04	4.90E+10	7.02E+05	6.98E+04	1.52E+07	1.72E-08
T ₂	1.52E+07	1.07E+13	4.80E+06	4.59E-03	1.50E+04	7.20E+10	1.03E+06	1.03E+05	2.24E+07	2.52E-08
T ₃	1.55E+10	1.57E+13	4.88E+09	4.66E+00	1.52E+07	7.31E+13	1.05E+09	1.04E+08	2.27E+10	2.08E-07
T ₄	7.42E+16	7.54E+19	3.39E+13	2.24E+07	7.31E+13	3.51E+20	5.03E+15	5.00E+14	1.09E+17	9.99E-01
Ts	7.20E+10	7.31E+13	3.29E+07	3.14E-02	7.09E+07	3.41E+14	4.88E+09	4.85E+08	1.06E+11	9.69E-07
T ₆	2.26E+09	2.29E+12	1.03E+06	9.85E-04	3.22E+03	1.07E+13	1.53E+08	1.52E+07	3.32E+09	3.04E-08
T ₇	2.32E+14	2.35E+17	1.06E+11	1.01E+02	3.30E+08	1.59E+15	1.57E+13	1.56E+12	3.41E+14	5.56E-04
T ₈	2.28E+11	2.32E+14	1.04E+08	9.95E-02	3.25E+05	1.56E+12	2.24E+07	1.54E+09	3.35E+11	5.48E-07
X _{TOF} , I _j	1.74E-04	1.77E-01	7.96E-08	5.24E-14	1.71E-07	8.22E-01	1.18E-05	1.18E-06	2.56E-04	

Table S4 The X_{TOF} of intermediates and transition states on $C_2H_4O@NH_2-Cu_1/Pd(111)$.

	IM1	IM2	IM3	IM4	IM5	IM6	IM7	IM8	IM9	X _{TOF} , T _i
T ₁	2.26E+09	4.83E+07	2.24E+07	6.91E+02	2.17E+01	2.29E+12	1.05E+09	7.16E+09	2.25E+08	2.66E-08
T ₂	1.54E+09	2.27E+10	1.05E+10	3.25E+05	1.02E+04	1.08E+15	4.93E+11	3.37E+12	1.06E+11	1.25E-05
T ₃	1.54E+09	3.29E+07	1.05E+10	3.25E+05	1.02E+04	1.08E+15	4.93E+11	3.37E+12	1.06E+11	1.25E-05
T ₄	1.07E+14	2.29E+12	1.06E+12	2.27E+10	7.13E+08	7.54E+19	3.44E+16	2.35E+17	7.39E+15	8.72E-01
T₅	1.57E+13	3.35E+11	1.55E+11	4.80E+06	1.04E+08	1.10E+19	5.03E+15	3.44E+16	1.08E+15	1.28E-01
T ₆	1.51E+05	3.22E+03	1.49E+03	4.61E-02	1.45E-03	1.06E+11	4.83E+07	3.30E+08	1.04E+07	1.22E-09
T ₇	2.25E+08	4.80E+06	2.23E+06	6.88E+01	2.16E+00	2.28E+11	7.20E+10	4.93E+11	1.55E+10	9.32E-09
T ₈	7.05E+06	1.51E+05	6.98E+04	2.16E+00	6.77E-02	7.16E+09	3.27E+06	1.55E+10	4.85E+08	2.67E-10
X _{tof} , I _j	1.42E-06	3.06E-08	1.43E-08	2.62E-10	9.42E-12	9.96E-01	4.55E-04	3.11E-03	9.76E-05	

Table S5 The X_{TOF} of intermediates and transition states on $C_3H_4O@NH_2-Cu_1/Pd(111)$.

	IM1	IM2	IM3	IM4	IM5	IM6	IM7	IM8	IM9	X _{tof} , T _i
T1	2.26E+09	3.37E+12	7.05E+06	6.81E-01	1.50E+04	4.88E+09	3.24E+04	1.00E+00	4.80E+06	1.51E-10
T ₂	2.25E+08	2.32E+14	4.85E+08	4.68E+01	1.03E+06	3.35E+11	2.23E+06	6.88E+01	3.30E+08	1.04E-08
T ₃	1.06E+12	1.59E+15	2.29E+12	2.21E+05	4.88E+09	1.59E+15	1.05E+10	3.25E+05	1.56E+12	1.42E-07
T ₄	7.50E+18	1.12E+22	2.34E+16	1.56E+12	3.44E+16	1.12E+22	7.42E+16	2.29E+12	1.10E+19	1.00E+00
Ts	7.31E+13	1.09E+17	2.28E+11	2.20E+04	3.35E+11	1.09E+17	7.24E+11	2.24E+07	1.07E+14	9.75E-06
T ₆	1.53E+08	2.28E+11	4.78E+05	4.61E-02	1.02E+03	2.28E+11	1.51E+06	4.68E+01	2.25E+08	2.04E-11
T ₇	2.29E+12	3.42E+15	7.16E+09	6.91E+02	1.52E+07	4.95E+12	2.27E+10	7.02E+05	3.37E+12	1.53E-07
T ₈	1.06E+11	1.58E+14	3.30E+08	3.19E+01	7.02E+05	2.28E+11	1.51E+06	3.24E+04	1.55E+11	7.07E-09
X _{TOF} , I _j	3.35E-04	5.00E-01	1.05E-06	6.97E-11	1.54E-06	5.00E-01	3.31E-06	1.02E-10	4.92E-04	

Table S6 The X_{TOF} of intermediates and transition states on $C_3H_6O@NH_2-Cu_1/Pd(111)$.

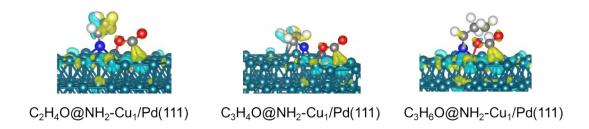


Fig. S12 The charge density difference for CO_2 adsorbed on $C_2H_4O@NH_2-Cu_1/Pd(111)$, $C_3H_4O@NH_2-Cu_1/Pd(111)$, and $C_3H_6O@NH_2-Cu_1/Pd(111)$. The isosurface value was set to 0.02 e/Å³. The cyan, grey, white, blue, red, and yellow spheres represented Pd, C, H, N, O, and Cu atoms, respectively.

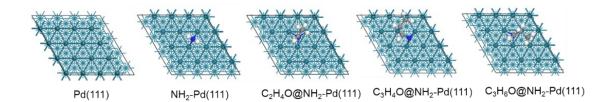


Fig. S13 After the Cu atoms in Cu₁/Pd(111), NH₂-Cu₁/Pd(111), C₂H₄O@NH₂-Cu₁/Pd(111), C₃H₄O@NH₂-Cu₁/Pd(111) and C₃H₆O@NH₂-Cu₁/Pd(111) were replaced by Pd atoms, these structures are named as Pd(111), NH₂-Pd(111), C₂H₄O@NH₂-Pd(111), C₃H₄O@NH₂-Pd(111) and C₃H₆O@NH₂-Pd(111), repectively.

structures	E _{ads} (CO ₂)	E _{ads} (groups)	E _{ads} (H)	ICOHP
Pd(111)	-0.11		-0.70	-2.28
Cu ₁ /Pd(111)	-0.12		-0.62	-2.33
NH ₂ -Pd(111)	-0.16	-2.67	-0.67	-2.40
NH ₂ -Cu ₁ /Pd(111)	-0.19	-2.71	-0.61	-2.46
C ₂ H ₄ O@NH ₂ -Pd(111)	-0.20	-2.64	-0.68	-2.44
C ₂ H ₄ O@NH ₂ -	0.22	2.64	0.(2	-2.47
Cu ₁ /Pd(111)	-0.22	-2.64	-0.62	
C ₃ H ₄ O@NH ₂ -Pd(111)	-0.17	-3.34	-0.67	-2.47
C ₃ H ₄ O@NH ₂ -	0.00	2.26	0.62	-2.51
Cu ₁ /Pd(111)	-0.20	-3.36	-0.62	
C ₃ H ₆ O@NH ₂ -Pd(111)	-0.21	-2.75	-0.67	-2.45
C ₃ H ₆ O@NH ₂ -	0.24	2.76	0.62	-2.49
Cu ₁ /Pd(111)	-0.24	-2.76	-0.62	

Table S7 The adsorption energy (eV) of CO₂, groups, and H atoms on various structures. ICOHP represented integrated crystal orbital Hamilton population.

Catalysts	Energy barriers (eV)	Free energy barriers (eV)	TOF(S ⁻¹)	References
C ₃ H ₄ O@NH ₂ - Cu ₁ /Pd(111)	0.72	0.66	-8.24E ⁻⁰⁸	This work
ZnO/Cu(111)	0.90		_	S4
Ga ₃ Ni ₅ (111)	0.85		_	S5
Zr ₃ O ₆ H ₆ /Cu(111)	1.36		_	\$6
SiC quantum dots	1.36		_	S7
In ₂ O ₃ (110)	1.14		_	S8
Cu@Pd core-shell	1.17		_	S9
PdCu ₃ (111)	1.40	—		S10
Pd ₃ Cu ₆	1.43	—		S11
Pd-ML	1.41			S11

Table S8 The energy barriers of the rate-determining steps for CO_2 hydrogenation to CH_3OH over various catalysts.

Table S9 The number electrons gained by groups before (e_{before}) and after CO₂ adsorption (e_{after}) . The difference in the number of electrons (Δe) obtained by groups before and after CO₂ adsorption.

Structures	e _{before}	e _{after}	Δe
NH ₂ -Cu ₁ /Pd(111)	0.16	0.13	0.03
C ₂ H ₄ O@NH ₂ -	0.22	0.18	0.04
$Cu_1/Pd(111)$			
C ₃ H ₄ O@NH ₂ -	0.29	0.24	0.05
Cu ₁ /Pd(111)			
C ₃ H ₆ O@NH ₂ -	0.23	0.20	0.03
Cu ₁ /Pd(111)			

Fig. S14 The effect of H_2O on (a) CO_2 adsorption energy, (b) HCOH intermediates, (c) the energy barriers of rate-determining step on $C_3H_4O@NH_2-Cu_1/Pd(111)$. The red dotted lines represented hydrogen bonds.

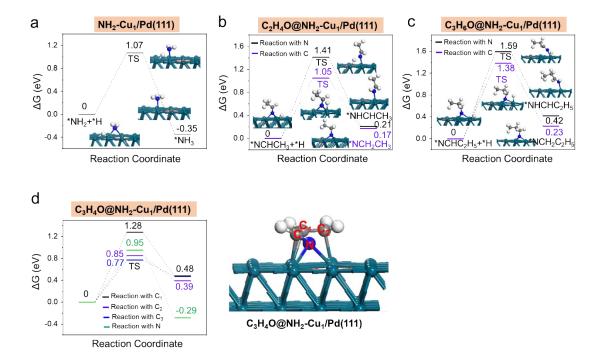


Fig. S15 The free energy profiles for H reactions with groups. (a) The reaction of H with - NH_2 generating - NH_3 over NH_2 - $Cu_1/Pd(111)$. (b) The reaction of H with the N atoms (black routes) and C atoms (purple routes) of C=N double bonds over $C_2H_4O@NH_2$ - $Cu_1/Pd(111)$. (c) The reaction of H with the N atoms (black routes) and C atoms (purple routes) of C=N double bonds over $C_3H_6O@NH_2$ - $Cu_1/Pd(111)$. (d) The free energy profiles for H reactions with C=N and C=C double bonds over $C_3H_4O@NH_2$ - $Cu_1/Pd(111)$. The green, black, purple, and blue routes represented that the H reacted with N, C, C₁, and C₂ atoms, respectively. TS represented the transition state. The cyan, grey, white, blue, and yellow spheres represented Pd, C, H, N, and Cu atoms, respectively.

Table S10 The free energy barriers (eV) for H reactions with functional groups and CO_2 over structures. RDS represented the rate-determining step for CO_2 hydrogenation to CH_3OH on various structures.

Structures	NH_2	C=N double bond		C=C double bond		RDS
Structures	11112	С	Ν	C_1	C_2	KD5
NH_2 - $Cu_1/Pd(111)$	1.07	—		—	—	0.88
C ₂ H ₄ O@NH ₂ - Cu ₁ /Pd(111)		1.05	1.41	_		0.79
C ₃ H ₄ O@NH ₂ - Cu ₁ /Pd(111)		1.28	0.95	0.85	0.77	0.66
C ₃ H ₆ O@NH ₂ - Cu ₁ /Pd(111)		1.38	1.59			0.86

The effect of support on catalytic performance

Supports can affect the activity, selectivity, and yield of products by regulating the active site, adsorption strength, coordination environment, binding energy and the chemical state of metal species, etc.^{S12-S14} For example, Bai et al. investigated the influence of supports (SiO₂, CeO₂, Al₂O₃ and P₂₅) on the catalytic performance of Pd₂Cu NPs. They found that Pd₂Cu NPs/CeO₂ showed the highest CH₃OH yield due to CeO₂ enhancing the activity of Cu. Pd₂Cu NPs/P₂₅ had the highest selectivity for C₂H₅OH owing to oxygen vacancies on P₂₅.^{S15} In addition, Jiang et al. reported that the formation rate of CH₃OH over supported Pd-Cu catalysts decreased in the following order: amorphous silica > SBA-15 > MCM-41 > MSU-F. Among the four supports, the amorphous silica supported Pd-Cu catalysts electivity for CH₃OH.^{S16}

Furthermore, we used DFT calculations to explore the effect of support on CO_2 adsorption in the revised manuscript. During the study, SiO_2 was chosen as the support for Pd-Cu nanoparticles (PdCu NPs/SiO₂) to determine the adsorption energy of CO_2 . As shown in Fig.S16[†], the adsorption energy of CO_2 on PdCu NPs/SiO₂ was -0.97 eV, which was stronger than that on $Cu_1/Pd(111)$ (-0.12 eV). The result indicated that the support had a significant effect on CO_2 adsorption through tuning the electronic structure, which was consistent with previous studies.^{S17}

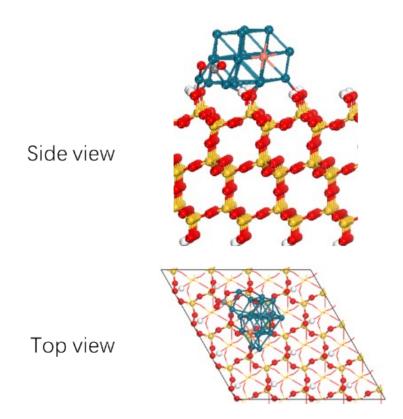


Fig. S16 The adsorption of CO₂ on PdCu NPs/SiO₂. The cyan, grey, white, red, orange, and yellow spheres represented Pd, C, H, O, Si and Cu atoms, respectively.

References

- S1 C. Stegelmann, A. Andreasen, C. T. Campbell, J. Am. Chem. Soc., 2009, 131, 8077-8082.
- S2 C. T. Campbell, ACS Catal., 2017, 7, 2770-2779.
- S3 S. Kozuch, S. Shaik, J. Phys. Chem. A, 2008, 112, 6032-6041.
- S4 S. Kattel, P.J. Ramírez, J.G. Chen, J.A. Rodriguez, P. Liu, Science, 2017, 355, 1296-1299.
- S5 Q. Tang, Z. Shen, C.K. Russell, M. Fan, J. Phys. Chem. C, 2018, 122, 315-330.
- S6 S. Kattel, B. Yan, Y. Yang, J.G. Chen, P. Liu, J. Am. Chem. Soc., 2016, 138, 12440-12450.
- S7 Y. Peng, L. Wang, Q. Luo, Y. Cao, Y. Dai, Z. Li, H. Li, X. Zheng, W. Yan, J. Yang, J. Zeng, Chem, 2018, 4, 613-625.
- S8 J. Ye, C. Liu, D. Mei, Q. Ge, ACS Catal., 2013, 3, 1296-1306.
- S9 J. Liu, Q. Ke, X. Chen, J. Mater. Sci., 2021, 56, 3790-3803.
- S10 L. Liu, H. Yao, Z. Jiang, T. Fang, Appl. Surf. Sci., 2018, 451, 333-345.
- S11 L. Liu, F. Fan, Z. Jiang, X. Gao, J. Wei, T. Fang, J. Phys. Chem. C, 2017, 121, 26287-26299.
- S12 S. Li, X. Yao, Y. Chen, Angew. Chem. Int. Ed, 2017, 56, 10761-10765.
- S13 Z. Li, R. Wu, L. Zhao, X. X. Wei, J. J. Wang, J. S. Chen, T. R. Zhang, Nano Res., 2021, 14, 3795-3809.
- S14 J. Y. Park, L. R. Baker, G. A. Somorjai, Chem. Rev., 2015, 115, 2781-2817.
- S15 S. X. Bai, Q. Shao, P. T. Wang, Q. G. Dai, X. Y. Wang, X. Q. Huang, J. Am. Chem. Soc., 2017, 139, 20, 6827-6830
- S16 X. Jiang, N. Koizumi, X. Guo, Appl. Catal. B: Environ., 2015, 170, 173-185.
- S17 F. Lin, X. Jiang, N. Boreriboon, Z. H. Wang, C. S. Song, K. F. Cen, Appl. Catal. A: Gen., 2019, 585, 117210.