Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Material (ESI)

Synergistically Boosting the Anchoring Effect and Catalytic Activity of MXenes as Bifunctional Electrocatalysts for Na-S Batteries by Single-Atom Catalysts Engineering

Na Li, ^a Yulu Zhan, ^b Haishun Wu, ^a Jun Fan, ^{c,d*} and Jianfeng Jia ^{a*}

^a Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China

^bBeijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

^c Department of Materials Science& Engineering, City University of Hong Kong, Hong Kong, China

^d Center for Advance Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China

Table S1 Adsorption energy (eV) of single Fe, Co, Ni, and Cu atom on different sites of Ti₂CS₂

Figure S1. The optimized geometric configurations of S_8 and Na_2S_x ($1 \le x \le 8$) clusters in groundstate.

Figure S2. Schematic diagrams of single TM atom supported on top of carbon (a) and titanium (b) atoms of Ti_2CS_2 in the top and side views.

Figure S3. Adsorption energies of single Fe, Co, Ni, and Cu atom immobilized on the surface of Ti_2CS_2 and combined with another TM atom forming corresponding TM dimer (a). Charge density difference of single Fe atom adsorbed on the surface of Ti_2CS_2 substrate in top (b) and side (c) views. Green and orange colors describe electron depletion and accumulation, respectively; The iso-surface level is set to be 0.01 e /Å³.

Figure S4. Ground-state configurations of S_8 (a), Na_2S_8 (b), Na_2S_6 (c), Na_2S_4 (d), Na_2S_2 (e), and Na_2S (f) adsorbed on the surface of Fe@Ti₂CS₂ in top view.

Figure S5. Charge density difference of S_8 (a), Na_2S_8 (b), Na_2S_6 (c), Na_2S_4 (d), Na_2S_2 (e), and Na_2S_8 (f) adsorbed on the surface of Ti_2CS_2 substrate in top view. The iso-surface level is set to be 0.01 e/Å³. Green and orange colors describe electron depletion and accumulation, respectively.

Figure S6. Binding energies (a) and ratio of vdW (b) of various NaPSs on Fe@Ti₂CS₂ by using DFT-D3 and Tkatchenko-Scheffler methods, respectively.

Figure S7. Decomposition path of Na_2S (a), and diffusion path of single Na atom (b) on the surface

of Fe@Ti₂CS₂.

Figure S8. Comparation of total density of states of $TM@Ti_2CS_2$ (TM=Fe, Co, Ni, and Cu) calculated by GGA and GGA+U methods, respectively.

Figure S9. Density of states of TM@Ti₂CS₂ (TM=Fe, Co, Ni, and Cu).

Figure S10. Density of states of S_8 (a), Na_2S_8 (b), Na_2S_6 (c), Na_2S_4 (d), Na_2S_2 (e), and Na_2S (f) adsorbed on the surface of $Co@Ti_2CS_2$.

Figure S11. Density of states of S_8 (a), Na_2S_8 (b), Na_2S_6 (c), Na_2S_4 (d), Na_2S_2 (e), and Na_2S (f) adsorbed on the surface of $Ni@Ti_2CS_2$.

Figure S12. Density of states of S_8 (a), Na_2S_8 (b), Na_2S_6 (c), Na_2S_4 (d), Na_2S_2 (e), and Na_2S (f) adsorbed on the surface of $Cu@Ti_2CS_2$.