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Figure S1. Zeta potentials of the as-prepared samples.

Figure S2. XRD patterns of TiO2, TC, and TC-MX composites.

Figure S3. SEM image of TiO2 nanosheets.
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Figure S4. SEM images of (a) TC-1, (b) TC-2, and (c) TC-3.

Figure S5. HAADF-STEM image of TC-2 with the corresponding Ti, O, Cd, and S EDX 

mapping results.



5

Figure S6. (a) SEM and (b) TEM images of Ti3C2Tx.

Figure S7. SEM image of TC-0.1MX.
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Figure S8. XPS spectrum of TC-0.1MX: (a) Survey, (b) C 1s, (c) O 1s and (d) Ti 2p.

Figure S9. Ultraviolet-visible-NIR light absorption spectrum of Ti3C2Tx colloid.
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Figure S10. (a) SEM image of TC-0.1RGO. (b) UV-vis diffuse reflectance spectra (DRS) of 

TC-0.1MX and TC-0.1RGO composites.

Figure S11. UV−vis absorption spectra of 4-NA aqueous solution over TC-0.1MX 

nanocomposite under visible light irradiation (λ > 420 nm) with the addition of ammonium 

formate as quencher for photogenerated holes under N2 purge.
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Figure S12. Transformed plots based on the Kubelka–Munk function versus photon energy for 

TC-2.

Note: As TiO2 has no light absorption in the visible region of TiO2@CdS (Figure 2c), the Eg 

obtained corresponds to CdS.

Figure S13. XPS valence band spectrum of TC-2.

Note: The valence band energy (EVB) of TiO2@CdS composite is attributed to CdS by XPS, 

because CdS is coated on the surface of CdS and the XPS detection depth is only ~5 nm.
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Figure S14. Mott-Schottky plots of TiO2.

Note: It is seen from Figure S14 that the flat-band potential of TiO2 is estimated to be around 

−0.67 V versus Ag/AgCl (pH = 6.8, for 0.2 M Na2SO4 electrolyte). It is known that the bottom 

of conduction band in n-type semiconductors is more negative by about −0.2 V than the flat 

band potential[1]. The conduction band of TiO2 is calculated to be −0.27 V versus normal 

hydrogen electrode (NHE, pH = 0)[2].

Figure S15. Photocurrent densities of TC-1, TC-2, and TC-3 under visible-NIR light irradiation 

(λ > 420 nm).
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Figure S16. Photoactivities of TC-0.1RGO a) and TC-0.2RGO b) composites for the selective 

reduction of 4-nitroaniline (4-NA) to 4-phenylenediamine (4-PDA) in water with the addition 

of ammonium formate as a hole scavenger and N2 purging in water under visible-NIR light 

irradiation (λ > 420 nm).

Figure S17. Control experiments for photocatalytic reduction of 4-NA over TC-0.1MX: 

reaction with K2S2O8 as a scavenger for electrons, and reaction without the purge of N2, without 

light, without catalyst.
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Figure S18. UV-vis absorption spectra of 4-NA over TC-0.1MX under adsorption equilibrium.

Figure S19. Stability test of TC-0.1MX.
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Figure S20. SEM images of (a) the original TC-0.1MX sample, and the TC-0.1MX sample 

after (b) three-cycle photocatalysis reactions.

Figure S21. XRD patterns of the TC-0.1MX sample before and after three-cycle photocatalysis 

reactions.

Figure S22. Ultraviolet photoelectron spectra (UPS) of the synthesized Ti3C2Tx MXene.
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Note: The excitation source was He I (hν = 21.22 eV) and a negative bias of –9.8 eV was 

applied during the UPS measurement. The following formula is used to calculate the work 

function (Φ) of Ti3C2Tx:

Φ = hv – W = 21.22 – 16.91 = 4.31 eV

where W is the width of the UPS spectrum. Then, the Fermi level (EF) of Ti3C2Tx is calculated 

as follows[3]:

EF = Evac − Φ

where Evac is the energy of a stationary electron at vacuum level (assumed as 0 eV). Therefore, 

it can be estimated that the EF of the Ti3C2Tx is located at −4.31 eV vs. vacuum level. According 

to the relationship between the Evac and the normal electrode potential (ENHE), Evac = −ENHE − 

4.44[3], the EF of Ti3C2Tx is thus determined to be −0.13 V vs. normal hydrogen electrode.

Figure S23. Mott-Schottky plots of TC-2 and TC-0.1MX.

Note: The flat band potential is obtained from the Mott-Schottky curve corresponding to the 

apparent Fermi level after the Fermi-level equilibration of the different components.
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Figure S24. Photoactivities of TC-0.1MX for selective reduction of 4-NA under light 

irradiation (λ > 780 nm) at room temperature.

Figure S25. The finite-difference time-domain (FDTD) model consisting of CdS deposited to 

TiO2 and then loaded to Ti3C2Tx.
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Figure S26. FDTD simulation of the near-field distributions of Ti3C2Tx.

Figure S27. (a) Mott-Schottky plots for TC-2 and TC-0.1MX composites under 1 sun 

irradiation and (b) corresponding calculated results of the photo-induced carrier concentration.

Note: As shown in Figure S27, the slope of C-2 vs. V in the Mott-Schottky plot of TC-0.1MX 

decreases as compared to that of TC-2, indicating the increase of charge carriers density. The 

charge carriers density (ND) is calculated to be 3.7 × 1019 and 7.5 × 1019 cm-3 for TC-2 and TC-

0.1MX, respectively, according to the following equation[4].

𝑁𝐷=
2

ⅇ𝜀𝜀0(
ⅆ(1 ∕ 𝐶2)

ⅆ𝑉 ) ‒ 1

where e is the elementary electronic charge, ε is the dielectric constant (8.99 for CdS[5]), ε0 is 

the permittivity in vacuum, C is the capacitance, and V is the applied potential.
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Figure S28. Time-resolved PL decay of TC-2 and TC-0.1MX.

Figure S29. (a) Decay curves of photovoltage, and (b) electron lifetime of TC-2 and TC-MX 

composites.
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Figure S30. EIS Nyquist plots of the samples.

Figure S31. Cyclic voltammetry curves of TC-2 and TC-0.1MX composites at different scan 

rates.
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Figure S32. The top view of optimized calculation models of (a) TiO2, (b) CdS, (c) Ti3C2Tx 

and (d) TC-MX.

Table S1. XRD intensities of TiO2 (224) and CdS (110) for different TC composites

Entry TC-1 TC-2 TC-3

TiO2 (224) 266 260 235

CdS (110) 545 460 344

Ratio of TiO2 (224) to CdS 

(110)
0.49 0.57 0.68
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