Supporting Information

On the Role of Plasmonic Ti₃C₂T_x MXene in Enhancing Photoredox Catalysis

Guanshun Xie^a, Chuang Han^b, Fei Song^a, Yisong Zhu^a, Xuanyu Wang^a, Jialin Wang^a, Zhenjun Wu^c, Xiuqiang Xie^{a,*}, Nan Zhang^{a,*}

Contents list

Figure S1. Zeta potentials of the as-prepared samples
Figure S2. XRD patterns of TiO ₂ , TC, and TC-MX composite3
Figure S3. SEM image of TiO ₂ nanosheets3
Figure S4. SEM images of (a) TC-1, (b) TC-2, and (c) TC-34
Figure S5. HAADF-STEM image of TC-2 with the corresponding Ti, O, Cd, and S EDX mapping results.
Figure S6. (a) SEM and (b) TEM images of $Ti_3C_2T_x$
Figure S7. SEM image of TC-0.1MX
Figure S8. XPS spectrum of TC-0.1MX: (a) Survey, (b) C 1s, (c) O 1s and (d) Ti 2p6
Figure S9 . Ultraviolet-visible-NIR light absorption spectrum of $Ti_3C_2T_x$ colloid
Figure S10 . (a) SEM image of TC-0.1RGO. (b) UV-vis diffuse reflectance spectra (DRS) of TC-0.1MX and TC-0.1RGO composites
Figure S11 . UV–vis absorption spectra of 4-NA aqueous solution over TC-0.1MX nanocomposite under visible light irradiation ($\lambda > 420$ nm) with the addition of ammonium formate as quencher for photogenerated holes under N ₂ purge
Figure S12. Transformed plots based on the Kubelka–Munk function versus photon energy for TC-2.8
Figure S13. XPS valence band spectrum of TC-2
Figure S14. Mott-Schottky plots of TiO29
Figure S15 . Photocurrent densities of TC-1, TC-2, and TC-3 under visible-NIR light irradiation ($\lambda > 420 \text{ nm}$)
Figure S16 . Photoactivities of TC-0.1RGO a) and TC-0.2RGO b) composites for the selective reduction of 4-nitroaniline (4-NA) to 4-phenylenediamine (4-PDA) in water with the addition of ammonium formate as a hole scavenger and N ₂ purging in water under visible-NIR light irradiation ($\lambda > 420$ nm).
Figure S17 . Control experiments for photocatalytic reduction of 4-NA over TC-0.1MX: reaction with K ₂ S ₂ O ₈ as a scavenger for electrons, and reaction without the purge of N ₂ , without light, without catalyst
Figure S18. UV-vis absorption spectra of 4-NA over TC-0.1MX under adsorption equilibrium11
Figure S19. Stability test of TC-0.1MX
Figure S20. SEM images of (a) the original TC-0.1MX sample, and the TC-0.1MX sample after (b) three-cycle photocatalysis reactions

Figure S21. XRD patterns of the TC-0.1MX sample before and after three-cycle photocatalysis reactions
Figure S22 . Ultraviolet photoelectron spectra (UPS) of the synthesized $Ti_3C_2T_x$ MXene12
Figure S23. Mott-Schottky plots of TC-2 and TC-0.1MX
Figure S24 . Photoactivities of TC-0.1MX for selective reduction of 4-NA under light irradiation ($\lambda > 780$ nm) at room temperature
Figure S25 . The finite-difference time-domain (FDTD) model consisting of CdS deposited to TiO_2 and then loaded to $Ti_3C_2T_x$
Figure S26 . FDTD simulation of the near-field distributions of $Ti_3C_2T_x$
Figure S27. (a) Mott-Schottky plots for TC-2 and TC-0.1MX composites under 1 sun irradiation and (b) corresponding calculated results of the photo-induced carrier concentration15
Figure S28. Time-resolved PL decay of TC-2 and TC-0.1MX
Figure S29. (a) Decay curves of photovoltage, and (b) electron lifetime of TC-2 and TC-MX composites
Figure S30. EIS Nyquist plots of the samples
Figure S31. Cyclic voltammetry curves of TC-2 and TC-0.1MX composites at different scan rates17
Figure S32 . The top view of optimized calculation models of (a) TiO_2 , (b) CdS, (c) $Ti_3C_2T_x$ and (d) TC-MX.
Table S1. XRD intensities of TiO2 (224) and CdS (110) for different TC composites
References

Figure S1. Zeta potentials of the as-prepared samples.

Figure S2. XRD patterns of TiO₂, TC, and TC-MX composites.

Figure S3. SEM image of TiO₂ nanosheets.

Figure S4. SEM images of (a) TC-1, (b) TC-2, and (c) TC-3.

Figure S5. HAADF-STEM image of TC-2 with the corresponding Ti, O, Cd, and S EDX mapping results.

Figure S6. (a) SEM and (b) TEM images of $Ti_3C_2T_x$.

Figure S7. SEM image of TC-0.1MX.

Figure S8. XPS spectrum of TC-0.1MX: (a) Survey, (b) C 1s, (c) O 1s and (d) Ti 2p.

Figure S9. Ultraviolet-visible-NIR light absorption spectrum of $Ti_3C_2T_x$ colloid.

Figure S10. (a) SEM image of TC-0.1RGO. (b) UV-vis diffuse reflectance spectra (DRS) of TC-0.1MX and TC-0.1RGO composites.

Figure S11. UV-vis absorption spectra of 4-NA aqueous solution over TC-0.1MX nanocomposite under visible light irradiation ($\lambda > 420$ nm) with the addition of ammonium formate as quencher for photogenerated holes under N₂ purge.

Figure S12. Transformed plots based on the Kubelka–Munk function versus photon energy for TC-2.

Note: As TiO_2 has no light absorption in the visible region of $TiO_2@CdS$ (**Figure 2c**), the E_g obtained corresponds to CdS.

Figure S13. XPS valence band spectrum of TC-2.

Note: The valence band energy (E_{VB}) of TiO₂@CdS composite is attributed to CdS by XPS, because CdS is coated on the surface of CdS and the XPS detection depth is only ~5 nm.

Figure S14. Mott-Schottky plots of TiO₂.

Note: It is seen from **Figure S14** that the flat-band potential of TiO_2 is estimated to be around -0.67 V versus Ag/AgCl (pH = 6.8, for 0.2 M Na₂SO₄ electrolyte). It is known that the bottom of conduction band in n-type semiconductors is more negative by about -0.2 V than the flat band potential^[1]. The conduction band of TiO_2 is calculated to be -0.27 V versus normal hydrogen electrode (NHE, pH = 0)^[2].

Figure S15. Photocurrent densities of TC-1, TC-2, and TC-3 under visible-NIR light irradiation $(\lambda > 420 \text{ nm}).$

Figure S16. Photoactivities of TC-0.1RGO a) and TC-0.2RGO b) composites for the selective reduction of 4-nitroaniline (4-NA) to 4-phenylenediamine (4-PDA) in water with the addition of ammonium formate as a hole scavenger and N₂ purging in water under visible-NIR light irradiation ($\lambda > 420$ nm).

Figure S17. Control experiments for photocatalytic reduction of 4-NA over TC-0.1MX: reaction with $K_2S_2O_8$ as a scavenger for electrons, and reaction without the purge of N_2 , without light, without catalyst.

Figure S18. UV-vis absorption spectra of 4-NA over TC-0.1MX under adsorption equilibrium.

Figure S19. Stability test of TC-0.1MX.

Figure S20. SEM images of (a) the original TC-0.1MX sample, and the TC-0.1MX sample

after (b) three-cycle photocatalysis reactions.

Figure S21. XRD patterns of the TC-0.1MX sample before and after three-cycle photocatalysis

reactions.

Figure S22. Ultraviolet photoelectron spectra (UPS) of the synthesized $Ti_3C_2T_x$ MXene.

Note: The excitation source was He I (hv = 21.22 eV) and a negative bias of -9.8 eV was applied during the UPS measurement. The following formula is used to calculate the work function (Φ) of Ti₃C₂T_x:

$$\Phi = hv - W = 21.22 - 16.91 = 4.31 \text{ eV}$$

where W is the width of the UPS spectrum. Then, the Fermi level (E_F) of $Ti_3C_2T_x$ is calculated as follows^[3]:

$$E_F = E_{vac} - \Phi$$

where E_{vac} is the energy of a stationary electron at vacuum level (assumed as 0 eV). Therefore, it can be estimated that the E_F of the $Ti_3C_2T_x$ is located at -4.31 eV vs. vacuum level. According to the relationship between the Evac and the normal electrode potential (E_{NHE}), $E_{vac} = -E_{NHE} 4.44^{[3]}$, the E_F of $Ti_3C_2T_x$ is thus determined to be -0.13 V vs. normal hydrogen electrode.

Figure S23. Mott-Schottky plots of TC-2 and TC-0.1MX.

Note: The flat band potential is obtained from the Mott-Schottky curve corresponding to the apparent Fermi level after the Fermi-level equilibration of the different components.

Figure S24. Photoactivities of TC-0.1MX for selective reduction of 4-NA under light irradiation ($\lambda > 780$ nm) at room temperature.

Figure S25. The finite-difference time-domain (FDTD) model consisting of CdS deposited to TiO_2 and then loaded to $Ti_3C_2T_x$.

Figure S26. FDTD simulation of the near-field distributions of $Ti_3C_2T_x$.

Figure S27. (a) Mott-Schottky plots for TC-2 and TC-0.1MX composites under 1 sun irradiation and (b) corresponding calculated results of the photo-induced carrier concentration. Note: As shown in Figure S27, the slope of C⁻² vs. *V* in the Mott-Schottky plot of TC-0.1MX decreases as compared to that of TC-2, indicating the increase of charge carriers density. The charge carriers density (N_D) is calculated to be 3.7×10^{19} and 7.5×10^{19} cm⁻³ for TC-2 and TC-0.1MX, respectively, according to the following equation^[4].

$$N_D = \frac{2}{\varepsilon \varepsilon \varepsilon_0} \left(\frac{dl (1 / C^2)}{dl V} \right)^{-1}$$

where *e* is the elementary electronic charge, ε is the dielectric constant (8.99 for CdS^[5]), ε_0 is the permittivity in vacuum, *C* is the capacitance, and *V* is the applied potential.

Figure S28. Time-resolved PL decay of TC-2 and TC-0.1MX.

Figure S29. (a) Decay curves of photovoltage, and (b) electron lifetime of TC-2 and TC-MX composites.

Figure S30. EIS Nyquist plots of the samples.

Figure S31. Cyclic voltammetry curves of TC-2 and TC-0.1MX composites at different scan rates.

Figure S32. The top view of optimized calculation models of (a) TiO_2 , (b) CdS, (c) $Ti_3C_2T_x$ and (d) TC-MX.

Table S1. XRD intensities of TiO₂ (224) and CdS (110) for different TC composites

Entry	TC-1	TC-2	TC-3
TiO ₂ (224)	266	260	235
CdS (110)	545	460	344
Ratio of TiO_2 (224) to CdS	0.49	0.57	0.68
(110)			

References

- [1] Y. Matsumoto, J. Solid State Chem. 1996, 126, 227.
- [2] Y. Xu, M. A. A. Schoonen, Am. Mineral. 2000, 85, 543.
- [3] J. Y. Li, Y. H. Li, F. Zhang, Z. R. Tang, Y. J. Xu, Appl. Catal. B: Environ. 2020, 269, 118783.
- [4] Z. Xu, Y. Lin, M. Yin, H. Zhang, C. Cheng, L. Lu, X. Xue, H. J. Fan, X. Chen, D. Li, *Adv. Mater. Interfaces* 2015, 2, 1500169.
- [5] C. Han, Z. R. Tang, J. Liu, S. Jin, Y. J. Xu, Chem. Sci. 2019, 10, 3514.