Supporting information:

Self-poled and transparent polyvinylidene fluoride-co-

hexafluoropropylene-based piezoelectric devices for printable and flexible

electronics

Hai Li^a, Sooman Lim^{a,*}

^a Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute,

Jeonbuk National University, Jeonju, 54896, Republic of Korea

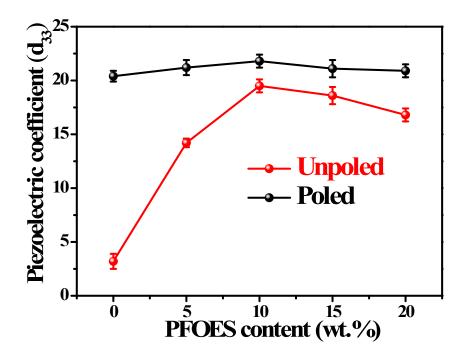


Figure S1. Piezoelectric coefficient (d_{33}) of PFOES/PVDF-HFP composite films with various PFOES contents.

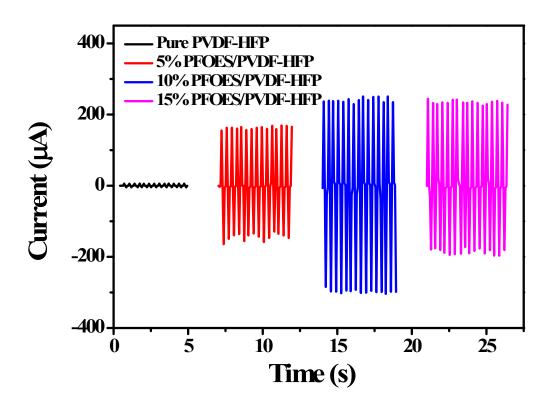



Figure S2. Output current of the as-printed films with various PFOES contents.

Figure S3. (a) Relationship between film thickness and air pressure. (b) Relationship between film thickness and output voltages.

Material	Fabrication method	β-phase content (%)	Voltage (V)	Power (µW)	Ref.
PVDF-HFP/h-BN/BaTiO3	Solution casting	46	2.4	0.89	1
PVDF-HFP/BTO/Ag	Solution casting	45.6	2.21	0.22	2
PVDF-HFP/ Co-ZnO	Electrospinning	54.6	2.8	None	3
PVDF/MnO2	Electrospinning	92	3.2	None	4
PVDF/BaTiO ₃	Printing	78	4	None	5
PVDF/SWCNT	Printing	69.3	2	2.1	6
PVDF/Graphene	Printing	67.3	2.5	None	7
PVDF-HFP/PFOES	Printing	82.7	6.2	6.9	This work

Table S1 Summary of self-poled PVDF-based PENGs in our study and other reported studies.

References

- Ponnamma, Deepalekshmi, and Mariam Al Ali Al-Maadeed. "Influence of BaTiO 3/white graphene filler synergy on the energy harvesting performance of a piezoelectric polymer nanocomposite." Sustainable energy & fuels 3.3 (2019): 774-785.
- Bouhamed A, Binyu Q, Böhm B, et al. A hybrid piezoelectric composite flexible film based on PVDF-HFP for boosting power generation[J]. Composites Science and Technology, 2021, 208: 108769.
- Parangusan H, Ponnamma D, Al-Maadeed M A A. Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators[J]. Scientific reports, 2018, 8(1): 1-11.
- Zhao, Qiuying, Lu Yang, Kaineng Chen, Yizhou Ma, Qirui Peng, Hongli Ji, and Jinhao Qiu. "Flexible textured MnO2 nanorods/PVDF hybrid films with superior piezoelectric performance for energy harvesting application." Composites Science and Technology 199 (2020): 108330.
- Bodkhe S, Turcot G, Gosselin F P, et al. One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures[J]. ACS applied materials & interfaces, 2017, 9(24): 20833-20842.

- Shepelin, Nick A., et al. "Printed recyclable and self-poled polymer piezoelectric generators through single-walled carbon nanotube templating." Energy & Environmental Science 13.3 (2020): 868-883.
- Wang A, Chen C, Liao L, et al. Enhanced β-phase in direct ink writing PVDF thin films by intercalation of Graphene[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(5): 1497-1502.