Supplementary Information

Two-Dimensional Nanomaterials: Synthesis and Applications in

Photothermal Catalysis

Jiafu Qu,^{*a, c} Songqi Li,^{a, c} Bailing Zhong,^a Zhiyuan Deng,^a Yinying Shu,^a Xiaogang yang,^a Yahui Cai,^b Jundie Hu,^{*a} Chang Ming Li^{*a}

^a School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

^b College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, PR China

° These authors contributed equally: Jiafu Qu, Songqi Li

*Email: qjf@usts.edu.cn; hjd@usts.edu.cn; ecmli@swu.edu.cn

Syr	thesis strategy	Merits	Drawbacks	
	Mechanical exfoliation	high crystal qualities; smooth surfaces	low yields; smaller size; uncontrollable thickness	
Top-down methods	Liquid exfoliation	Low cost; high efficiency; easy versatile and scalable	time-consuming; harsh environments; extreme conditions; environmental pollution; inhomogeneous thickness	
Bottom-up methods	Chemical vapor deposition	large areas; high quality; large-scale preparation;	specific substrates; harsh reaction conditions; high energy consumption; high cost	
	Wet-chemical synthesis	Easy operation; controllable morphology and crystal size; low energy consumption; good optical performance	harsh reaction conditions; low-quality with defects	

Table S1. Comparison of the synthesis strategy of 2D nanomaterials.¹

Table S2. Photothermal applications of 2D nanomaterials and their composites.

Photothermal application	Materials	Temperature s (°C)	Light source	Ref.
CO ₂ reduction	In ₂ O _{3-x}	340	300 W Xe lamp	2
	Ru@FL-LDHs	350	300 W Xe lamp (~ 10 Suns)	3
	Cu ₂ O/G	250	300 W Xe lamp, 200 mW cm ⁻²	4
	Pt/H _x MoO _{3-y}	140	Xe lamp irradiation ($\lambda > 450 \text{ nm}$)	5
	CoFe-650	310	300 W Xe light	6
	Ni/Nb ₂ C	402	300 W Xe arc lamp	7
	Au-Cu/g-C ₃ N ₄	120	300 W Xe lamp (λ > 420 nm)	8
VOCs oxidation	Cu-Co ₃ O ₄	207	Full solar spectrum with light of 834 mW cm ⁻²	9

	GO/MnO _x	80	300 W xenon lamp	10
	TiO ₂	290	Hg lamp	11
	GO/MnO _x /CN	~ 85	300 W Xe lamp	12
	Pt-rGO-TiO ₂	150	IR light irradiation, 116 mW/cm ²	13
	Pt-LDH/CeO ₂	160	Xenon lamp, 160 mW/cm ²	14
	$Ni_2P/TiO_2(B)$	90	300W Xe lamp	15
	SAAg-g-CN	55	300 W Xenon lamp	16
	Mo ₂ C/ZnIn ₂ S ₄	124.1	300 W Xe lamp, 100 mW/cm ²	17
II ano duotion	CS@ZIS@PS	43.4	300 W Xenon Lamp $(\lambda > 420 \text{ nm})$	18
H ₂ production	TiN-Pt	~50	Solar-simulated light (Sciencetech Light Line A4-C250)	19
	Cu/TiO ₂	90	300 W Xenon lamp (full-spectrum)	20
	NiS@g-C ₃ N ₄	56.7	300 W Xe lamp	21
	d-Ti ₃ C ₂ membrane	~39	300 W Xe lamp	22
	Ti ₃ C ₂ T _x /La _{0.5} Sr _{0.5} CoO ₃ (LSC)	40	350 W Xe lamp (λ > 420 nm)	23
ЦО	BiInSe ₃ @CF	50	Xe lamp	24
H_2O	hierarchical graphene foam	114.8	Solar simulator	
purflication			(SAN-EI ELECTRIC	25
			XES-160S1)	
	BPQDs	~55	808 nm laser, 1 W/cm ²	26

Reference

- 1. S. H. Choi, S. J. Yun, Y. S. Won, C. S. Oh, S. M. Kim, K. K. Kim and Y. H. Lee, *Nat. Commun.*, 2022, **13**, 1484.
- Y. Qi, L. Song, S. Ouyang, X. Liang, S. Ning, Q. Zhang and J. Ye, *Adv. Mater.*, 2020, **32**, e1903915.
- J. Ren, S. Ouyang, H. Xu, X. Meng, T. Wang, D. Wang and J. Ye, *Adv. Energy Mater.*, 2017, 7, 1601657.
- 4. D. Mateo, J. Albero and H. García, *Energy Environ. Sci.*, 2017, **10**, 2392-2400.

- 5. H. Ge, Y. Kuwahara, K. Kusu and H. Yamashita, *J. Mater. Chem. A*, 2021, **9**, 13898-13907.
- G. Chen, R. Gao, Y. Zhao, Z. Li, G. I. N. Waterhouse, R. Shi, J. Zhao, M. Zhang,
 L. Shang, G. Sheng, X. Zhang, X. Wen, L. Z. Wu, C. H. Tung and T. Zhang,
 Adv. Mater., 2018, 30.
- Z. Wu, C. Li, Z. Li, K. Feng, M. Cai, D. Zhang, S. Wang, M. Chu, C. Zhang, J. Shen, Z. Huang, Y. Xiao, G. A. Ozin, X. Zhang and L. He, *ACS Nano*, 2021, 15, 5696-5705.
- P. Li, L. Liu, W. An, H. Wang, H. Guo, Y. Liang and W. Cui, *Appl Catal B-Environ.*, 2020, 266, 118618.
- S. Zhao, X. Jin, P. Wu, Y. Zhao, G. Chen, Y. Li, A. Li, D. Ye and Y. Qiu, ACS Appl. Nano Mater., 2020, 3, 10454-10461.
- 10. Z. Wang, H. Yu, L. Zhang, L. Guo and X. Dong, *Journal of the Taiwan Institute* of Chemical Engineers, 2020, **107**, 119-128.
- L. Ren, M. Mao, Y. Li, L. Lan, Z. Zhang and X. Zhao, *Appl Catal B-Environ.*, 2016, **198**, 303-310.
- Z. Wang, H. Yu, Y. Xiao, L. Zhang, L. Guo, L. Zhang and X. Dong, *Chem. Eng.* J., 2020, **394**, 125014.
- J.-J. Li, S.-C. Cai, E.-Q. Yu, B. Weng, X. Chen, J. Chen, H.-P. Jia and Y.-J. Xu, *Appl Catal B-Environ.*, 2018, 233, 260-271.
- Y. Liu, M. Pei, H. Liang, X. Wu, B. Li, Z. Si and F. Kang, ACS Appl. Mater. Interfaces, 2022, 14, 36633-36643.
- X. Luo, R. Li, K. P. Homewood, X. Chen and Y. Gao, *Appl. Surf. Sci.*, 2020, 505, 144099.
- X. Li, S. Zhao, X. Duan, H. Zhang, S.-z. Yang, P. Zhang, S. P. Jiang, S. Liu, H. Sun and S. Wang, *Appl Catal B-Environ.*, 2021, 283, 119660.
- 17. C. Du, B. Yan and G. Yang, *Nano Energy*, 2020, **76**, 105031.
- 18. M. Wang, G. Zhang, Z. Guan, J. Yang and Q. Li, *Small*, 2021, 17, e2006952.
- S. Rej, L. Mascaretti, E. Y. Santiago, O. Tomanec, Š. Kment, Z. Wang, R. Zbořil, P. Fornasiero, A. O. Govorov and A. Naldoni, *ACS Catal.*, 2020, 10,

5261-5271.

- 20. R. Song, M. Liu, B. Luo, J. Geng and D. Jing, *AIChE J.*, 2020, 66.
- L. Lu, X. Xu, K. An, Y. Wang and F.-n. Shi, ACS Sustain. Chem. Eng., 2018, 6, 11869-11876.
- J. Zhao, Y. Yang, C. Yang, Y. Tian, Y. Han, J. Liu, X. Yin and W. Que, *J. Mater. Chem. A*, 2018, 6, 16196-16204.
- 23. D. Fan, Y. Lu, H. Zhang, H. Xu, C. Lu, Y. Tang and X. Yang, *Appl Catal B-Environ.*, 2021, **295**, 120285.
- 24. J. Yao and G. Yang, J. Mater. Chem. A, 2018, 6, 3869-3876.
- H. Ren, M. Tang, B. Guan, K. Wang, J. Yang, F. Wang, M. Wang, J. Shan, Z. Chen, D. Wei, H. Peng and Z. Liu, *Adv. Mater.*, 2017, 29.
- Z. Sun, H. Xie, S. Tang, X. F. Yu, Z. Guo, J. Shao, H. Zhang, H. Huang, H. Wang and P. K. Chu, *Angew. Chem. Int. Ed.*, 2015, 54, 11526-11530.