Supporting Information

Atomically dispersed Mn atoms coordinated with N and O within N-doped porous carbon framework for boosted oxygen reduction catalysis

Juanjuan Huo,^{a,b} Xianjun Cao,^b Yaping Tian,^g Lu Li,^b Junpeng Qu,^b Yuhan Xie,^d Xinming Nie,^{*f} Yufei Zhao,^{*b} Jinqiang Zhang,^{*e} and Hao Liu^{*b,c,d}

^aInstitute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China.

^bJoint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. Email: Yufei-Zhao@shu.edu.cn

^cState Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200444, China.

^dCentre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia. Email: Hao.Liu@uts.edu.au

^eDepartment of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada. Email: jinqiang.zhang@utoronto.ca

^fSchool of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China. Email: nxinming@jsnu.edu.cn

gKeWen College, JiangSu Normal University, XuZhou, Jiangsu 221000, China

Figure S1. (a and b) SEM images of ZIF-8 sample. (c) Powder XRD pattern of the synthesized ZIF-8 sample.

Figure S2. SEM images of the prepared ZIF-8-derived porous carbon (NC) sample.

Figure S3. (a) HR-TEM image of Mn-SAs/NC catalyst and corresponding Fast Fourier Transform (FFT) profile. TEM images of (b) Fe-SAs/NC and (c) Cu-SAs/NC samples.

Figure S4. (a) Survey XPS spectra of various samples.

As shown in Fe 2p spectrum, two pairs of peaks at 710.2/723.2 eV and 714.6/726.8 eV are ascribed to Fe²⁺ and Fe³⁺ species, respectively.^[1,2] For the Co 2p spectrum, the peaks at binding energies of 780.1 eV and 783.2 eV are characteristic of Co²⁺ and Co³⁺ species, respectively.^[3, 4] In the high-resolution Cu 2p spectrum, the divided peaks at 931.1 and 933.7 eV are attributed to the Cu⁺, and Cu²⁺ species, respectively.^[5, 6] No peaks originated from pure metal species can be observed in the various M-SAs/NC, indicating the existence of oxidized metal states.

Catalysts	C (at.%)	N (at.%)	O (at.%)	metal (at.%)
Mn-SAs/NC	85.15	7.86	6.32	Mn, 0.67
Fe-SAs/NC	82.18	7.16	10.19	Fe, 0.47
Co-SAs/NC	84.17	3.6	11.84	Co, 0.38
Cu-SAs/NC	83.37	8.01	8.38	Cu, 0.24

Table S1. The corresponding atomic contents of as prepared catalysts based on XPS analysis.

Figure S5. Schematic representation of different types of N atoms within a graphitic layer in Mn-SAs/NC catalyst.

The existed pyridinic-N and graphitic-N benefit to the altering of electronic structures of graphitic carbon, which can effectively facilitate the enhancement of ORR activity.^[7, 8] The atomic model of N species on the surface of catalyst was displayed in **Fig. S5**. Typically, the graphitic-N is contributed to the replacement of a carbon atom with a heteroatom N with bonding three sp^2 -carbon atoms in the panel of graphene. The pyrrolic-N is a five-round ring consisted of a heteroatom N and four carbon atoms at the edge of graphene. The pyridinic-N locates at the edge of graphene plane with bonding two sp^2 -carbon atoms. The oxidized-N reveals that the heteroatom N dopes into carbon matrix with bonding two carbon atoms and oxygen groups.

Figure S6. High-resolution C 1s XPS spectra in M-SAs/NC.

For the C 1s XPS spectra in **Fig. S6**, five peaks can be observed at 284.4, 285.3, 286.2, 287.5, and 289.4 eV, corresponding to the C=C, C-C/C-N, C-N/C-O, C=O, and N-C=O, respectively.^[9]

Figure S7. (a) Mn K-edge XANES spectra of Mn foil, MnPc, and Mn-SAs/NC. (b) FT EXAFS spectra at the Mn K-edge of Mn foil, MnPc, and Mn-SAs/NC.

Figure S8. Fitting result of the FT EXAFS from Figure S7.

Table S2. Comparison of ORR activity of the as-prepared $Mn-N_x-NC$ with the state-ofthe-art catalysts in acidic and alkaline media, single-atom loading and atomic density of the previous reported literatures.

Sample	Single atom	E _{1/2} (V vs. RHE)		Loading	Daf
		Alkaline	Acidic	content (%)	Kei.
Mn-SAs/NC	Mn	0.91 (0.1 M KOH)	0.76 (0.5 M H ₂ SO ₄)	0.67 at.%	This work
Mn-N-C	Mn		0.80 (0.5 M H ₂ SO ₄)	0.68 at.%	Nat. Catal. 2018, 1, 935-945.
Co ₂ /Fe–N@CHC	Co/Fe	0.915 (0.1 M KOH)	0.812 V (0.1 M HClO ₄)	Co(0.41 at. %)/ Fe(0.19 at. %)	Adv. Mater. 2021, 33, 2104718.
Mn/C-NO	Mn	0.86		0.23 at.%	Adv. Mater. 2018, 30, 1801732.
Mn@NG	Mn	0.82			Appl. Catal. B: Environ. 2019, 257, 117930.
Fe-N ₄ SAs/NC	Fe	0.885		1.96 at. %	Angew. Chem. Int. Ed. 2018, 57, 8614.
Fe SA-N-C	Fe	0.891		1.76 wt. %	Angew. Chem. Int. Ed. 2018, 57, 8525.
Co SAs/N-C	Со	0.881		4 wt. %	Angew. Chem. Int. Ed. 2016, 55, 10800.
Ni-MnO/rGO	Ni	0.78			Adv. Mater. 2018, 30, 1704609.
SA-Fe/NG	Fe	0.88	0.8 (0.1 M HClO ₄)		Proc. Natl. Acad. Sci. 2018, 115, 6626
Fe/N-PCNs	Fe	0.86			ACS. Appl. Mater. Interface 2020, 12,

					13878.
FeCoNi/HCS	Fe/Co/Ni	0.85			Nano Lett. 2021, 21,
					3640-3648.
ZnN _X /BP	Zn	0.85	0.66 (0.1 M	0.30 at.%	Adv. Funct. Mater.
			HClO ₄)		2017, 27, 1700802.
ISAS Co/HNCS	Со		0.772 (0.5.)		J. Am. Chem. Soc.
			0.773 (0.5 M H ₂ SO ₄)	2.2 wt. %	2017, 139, 17269-
					17272.
SA-Fe-HPC	Fe	0.89	0.81 (0.1 M	5.58 wt. %	Angew. Chem. Int. Ed.
			$H_2SO_4)$		2018, 57, 9038-9043.
Zn-N-C-1	Zn	0.873	0.746(0.1 M	5.64 wt. %	Angew. Chem. Int.
			HClO ₄)		Ed. 2019, 58, 7035.

Figure S9. (a) CV curves of Mn-SAs/NC and NC samples obtained in O₂-saturated 1.0 M KOH electrolytes. (b) CV curves of other control samples including Fe-SAs/NC, Co-SAs/NC, and Cu-SAs/NC, obtained in O₂-saturated 1.0 M KOH electrolyte.

Figure S10. (a) ORR polarization curves of various Mn-SAs/NC samples in 0.1 M KOH at various rotating rates and (b) the corresponding K–L plots of Mn-SAs/NC

Figure S11. Chronoamperometric curves of as-prepared Mn-SAs/NC and Pt/C catalysts at 0.65 V (vs. RHE) in 0.1 M KOH solution with the addition of 20 mL methanol.

Figure S12. CV curves of NC, Mn-SAs/NC, and M (Fe, Co, and Cu)-SAs/NC catalysts obtained in N_2 -saturated 0.5 M H₂SO₄ electrolytes.

Figure S13. Top and side views of the optimized adsorption model of O^* , OH^* , and OOH^* on MnN_2O_2 structure. Brown, purple, red, and white balls represent C, Mn, O, and N, respectively.

Figure S14. (a) Proposed ORR reaction scheme of MnN_4 model with optimized geometry and the intermediates in alkaline media. (C: brown, Mn: purple, O: red, and N: white balls.) (b) Free energy diagram for ORR of MnN_4 model at 0 V.

 Gan, G.; Li, X.; Wang, L.; Fan, S.; Mu, J.; Wang, P.; Chen, G., Active Sites in Single-Atom Fe–N_x–C Nanosheets for Selective Electrochemical Dechlorination of 1,2-Dichloroethane to Ethylene. *ACS Nano* 2020, *14* (8), 9929-9937.
Zhou, Y.; Tao, X.; Chen, G.; Lu, R.; Wang, D.; Chen, M.-X.; Jin, E.; Yang, J.; Liang, H.-W.; Zhao, Y.; Feng, X.; Narita, A.; Müllen, K., Multilayer stabilization for fabricating high-loading single-atom catalysts. *Nature Communications* 2020, *11* (1), 5892.

3. Li, M.; Wu, S.; Yang, X.; Hu, J.; Peng, L.; Bai, L.; Huo, Q.; Guan, J., Highly efficient single atom cobalt catalyst for selective oxidation of alcohols. *Applied Catalysis A: General* **2017**, *543*, 61-66.

4. Chen, K.; Kim, S.; Je, M.; Choi, H.; Shi, Z.; Vladimir, N.; Kim, K. H.; Li, O. L., Ultrasonic Plasma Engineering Toward Facile Synthesis of Single-Atom M- N_4 /N-Doped Carbon (M = Fe, Co) as Superior Oxygen Electrocatalyst in Rechargeable Zinc–Air Batteries. *Nano-Micro Letters* **2021**, *13* (1), 60.

5. Tong, M.; Sun, F.; Xie, Y.; Wang, Y.; Yang, Y.; Tian, C.; Wang, L.; Fu, H., Operando Cooperated Catalytic Mechanism of Atomically Dispersed Cu–N4 and Zn–N₄ for Promoting Oxygen Reduction Reaction. *Angewandte Chemie International Edition* **2021**, *60* (25), 14005-14012.

6. Chen, T.; Zhu, Z.; Zhang, H.; Qiu, Y.; Yin, D.; Zhao, G., Facile Construction of a Copper-Containing Covalent Bond for Peroxymonosulfate Activation: Efficient Redox Behavior of Copper Species via Electron Transfer Regulation. *ACS Applied Materials & Interfaces* **2020**, *12* (38), 42790-42802.

Liu, M.; Lee, J.; Yang, T.-C.; Zheng, F.; Zhao, J.; Yang, C.-M.; Lee, L.
Y. S., Synergies of Fe Single Atoms and Clusters on N-Doped Carbon Electrocatalyst for pH-Universal Oxygen Reduction. *Small Methods* 2021, 5 (5), 2001165.

Zhu, C.; Shi, Q.; Xu, B. Z.; Fu, S.; Wan, G.; Yang, C.; Yao, S.; Song,
J.; Zhou, H.; Du, D.; Beckman, S. P.; Su, D.; Lin, Y., Hierarchically Porous
M–N–C (M = Co and Fe) Single-Atom Electrocatalysts with Robust MNx Active
Moieties Enable Enhanced ORR Performance. *Advanced Energy Materials* 2018, 8 (29), 1801956.

9. Fu, Y.; Wei, Q.; Zhang, G.; Wang, X.; Zhang, J.; Hu, Y.; Wang, D.; Zuin, L.; Zhou, T.; Wu, Y.; Sun, S., High-Performance Reversible Aqueous Zn-Ion Battery Based on Porous MnOx Nanorods Coated by MOF-Derived N-Doped Carbon. *Advanced Energy Materials* **2018**, *8* (26), 1801445.