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Figure S1 TGA curves of (a) MO, (b) YMO−0.05, (c) YMO−0.1, and (d) YMO−0.2.
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Figure S2 XPS (a) Mn 2p, (b) K 2p, and (c) O 1s spectra of MO; (d) XPS Y 3d spectra 
of YMO samples.
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Figure S3 CV curves of (a) YMO−0.1 and (b) MO measured at the scan rate of 50−100 
mV s−1 in the potential window between 0.7 and 0.9 V and (c) the corresponding 
double−layer capacitance evaluations of MO and YMO−0.1.
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Figure S4 Evaluation of coulombic efficiency (CE), energy efficiency (EE), and 
specific energy for YMO−0.1 at 0.5 A g−1. Specific energy (SE) can be calculated from 
the area under the GCD curve.
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Figure S5 Coulombic efficiency evaluations of MO and YMO samples.
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Figure S6 (a) charge and (b) discharge curves in GITT measurements and (c,d) the 
corresponding ion diffusion coefficient of MO and YMO−0.1.

GITT measurements were employed to evaluate solid−state ion diffusion in cathode 
materials based on the following equation:1-3 
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where τ stands for the time period for the pulse step (1800 s); VM denotes the molar 
volume of the active material (103.2 cm3 mol–1 based on the standard card JCPDS no. 
80–1098); MB is the molecular weight of MnO2 (103.9 g mol–1 for MO and 107.8 for 
YMO−0.1); S is the BET surface area (112 m2 g–1 for MO and 106 m2 g–1 for 
YMO−0.1); Eτ and Es represent the voltage change (V) during titration and the △ △

difference in steady−state voltage (V) between consecutive relaxation steps, 
respectively.
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Figure S7 (a) EIS spectra and (b) Z’ vs ω−0.5 plot of YMO−0.05 and YMO−0.2.

Figure S8 Ex situ XRD patterns of YMO−0.1 cathodes at various charge/discharge 
states.
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Figure S9 Ex situ XPS (a,b) O 1s and (c,d) Y 3d spectra of YMO−0.1 cathodes at (a,c) 
discharged state at 1.0 V and (b,d) charged state at 1.9 V. 

Figure S10 Comparison of XRD patterns of YMO−0.1 before and after washed with 
concentrated acetic acid (99.8%).
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Figure S11 In situ Raman spectra for the 1st discharge, 1st charge, and 2nd discharge 
processes of (a) YMO−0.1 and (b) MO. 

Figure S12 In situ Raman spectra for the 5th cycle of (a) YMO−0.1 and (b) MO. 
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Figure S13 In situ Raman spectra for the 10th cycle of (a) YMO−0.1 and (b) MO. 

Figure S14 The SEM observations of (a) ZHS at discharged state (1.0 V) and (b) ZPM 
at charged state (1.9 V) of YMO−0.1 cathode without washing with concentrated acetic 
acid (99.8%). 

10



Figure S15 Lorentz fitting of Raman spectra of YMO−0.1 electrode at (a) pristine state, 
(b) charged to 1.9 V in the 1st cycle (C1.9V−1st), (c) discharged to 1.0 V in the 5th 
cycle (D1.0V−5th), (d) charged to 1.9 V in the 5th cycle (C1.9V−5th), (e) discharged 
to 1.0 V in the 10th cycle (D1.0V−10th), (d) charged to 1.9 V in the 10th cycle 
(C1.9V−10th). The blue curve corresponds to the formed Zn adsorbed 
phyllomanganates (ZPM). 

Figure S16 Lorentz fitting of Raman spectra of MO electrode at (a) pristine state, (b) 
C1.9V−1st, (c) D1.0V−5th, (d) C1.9V−5th, (e) D1.0V−10th, (d) C1.9V−10th. The blue 
curve corresponds to the formed Zn adsorbed phyllomanganates (ZPM). 
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Figure S17 Cycle performance of MO and YMO samples measured at 1 A g−1.

Figure S18 SEM images of (a,c) pristine and (b,d) cycled electrodes after 2000 cycles 
at 4 A g−1 stopped at 1.9 V for (a,b) YMO−0.1 and (c,d) MO. 
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Figure S19 SEM images of (a) pristine Zn foil and (b) cycled Zn anode (paired with 
YMO−0.1 cathode) after 2000 cycles at 4 A g−1; (c) XRD pattern of pristine and cycled 
Zn electrodes.
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Table S1 Electrochemical performances of preintercalated metal cations layered manganese oxide cathodes used in RAZIBs. 

Cathode material Electrolyte
Voltage 

window (V)

Discharge 

capacity (mAh 

g−1)

Capacity retention /

cycles / current density

K0.19Y0.05MnO2 0.50H2∙

O nanoflakes 

(YMO−0.1) 

1 M ZnSO4 +

0.1 M MnSO4

1.0~1.9

212 at 0.5 A g−1

143 at 2.0 A g−1

114 at 4.0 A g−1

95% / 3000 / 4.0 A g−1

Sn4+−MnO2/SnO2

nanosheets4

2 M ZnSO4 +

0.1 M MnSO4
0.8~1.8

279.6 at 0.5 A g−1

179.4 at 2.0 A g−1
92.4 % / 2000 / 2.0 A g−1

K+/Al3+−MnO2 

nanosheets5

2 M ZnSO4 +

0.1 M MnSO4
0.8~1.9

269.5 at 0.5 A g−1

85.2 at 2.0 A g−1
76% / 300 / 0.5 A g−1

Bi3+−MnO2 

nanoflower6

2 M ZnSO4 +

0.1 M MnSO4
0.8~1.9

130.8 at 0.4 A g−1

65.9 at 2.0 A g−1
98.6% / 1100 / 1.0 A g−1

Co3+−MnO2 

thin film7

1 M ZnSO4 +

0.07 M MnSO4
1.0~1.8

288 at 0.3 A g−1

205 at 3.0 A g−1
~100 % / 600 / 1.2 A g−1

La3+−MnO2 1 M ZnSO4 + 0.8~1.9 279 at 0.1 A g−1 71% / 200 / 0.2 A g−1
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nanoflorets8 0.4 M MnSO4 122 at 1.6 A g−1

Zn2+−MnO2

nanospheres9

2 M ZnSO4 +

0.1 M MnSO4
0.8~1.9

272 at 0.3 A g−1

121 at 3.0 A g−1
72% / 2000 / 3.0 A g−1

Cu2+−MnO2

nanoflakes10

1 M ZnSO4 +

0.1 M MnSO4
1.0~1.9

240 at 0.5 A g−1

121 at 4.0 A g−1
99% / 1500 / 4.0 A g−1

Ca2+−MnO2

nanoflakes11

1 M ZnSO4 +

0.1 M MnSO4
0.4~1.9

277.7 at 0.35 A 

g−1

124.5 at 3.5 A g−1

~80 % /5000 / 3.5 A g−1

K+−MnO2

nanoflakes12

2 M ZnSO4 +

0.2 M MnSO4
0.4~1.9

425 at 0.175 A g−1

108 at 3.5 A g−1
93 % / 1500 / 3.5 A g−1

Na+−Mn2O4

nanoplates13

2 M ZnSO4 +

0.2 M MnSO4
0.9~1.9

232 at 0.616 A g−1

134 at 3.08 A g−1
98% / 10000 /6.16 A g−1
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