Supporting Information

Diverse CsPbI₃ Assembly Structures: The Role of Surface Acids

Dandan Yang, *^a Xuebin Zhang, ^a Shijia Liu, ^a Zhiheng Xu, ^b Yang Yang, ^a Xiaoming Li, ^c Qiuyu Ye, ^a Qin Xu *^a and Haibo Zeng *^c

^a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
^b Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

^c MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

Experimental part

Materials: Lead (II) bromide (PbI₂, 99%), Cesium carbonate (Cs₂CO₃, 99.9%), oleylamine (OAm, 80-90%), oleic acid (OA, 90%), and 1,4-Dodecyl benzene sulfonic acid (1,4-DBSA, 95%) were purchased from Aladdin. 1-octadecene (ODE, 90%), Ethyl acetate (EA, AR, 97%), and Hexane (anhydrous, 99.5%) were bought from Macklin. All chemicals were used without any further purification.

Preparation of Cesium oleate precursors: Cs_2CO_3 (0.36 g, 1.1 mmoL), octadecene (15 mL), and oleic acid (1.5 mL) were added into 100 mL 3-neck flask, exhausted for half an hour at 120°C, and then heated to 150°C under Ar atmosphere until all Cs_2CO_3 reacted with OA. The solution was kept at 120°C to avoid solidification before injection.

Synthesis of Cs_4PbI_6 NCs: PbI₂ (0.54 mmoL, 0.1242 g), ODE (7.5 mL), OAm (1.5 mL), OA (1.5 mL) were loaded into a 100 mL 3-neck flask and degassed for half an hour at 120°C under Ar flow. The temperature was increased to 160°C under Ar atmosphere. The preheated Cs-oleate solution (0.75 mL, 0.033 mmoL) was swiftly injected into the transparent precursor solution. After 5 seconds, the reaction mixture was cooled down using an ice bath.

*Synthesis of nanowires-like CsPbI*₃ *NCs (CsPbI*₃-*S*₁ *NCs):* PbI₂ (0.54 mmoL, 0.1242 g), ODE (7.5 mL), the molar ratio of 4-DBSA and OAm (2.6, 2.37 moL:0.91 moL) were loaded into a 100 mL 3-neck flask and degassed for half an hour at 120°C under Ar flow. The temperature was increased to 160°C and OA (1.5 mL) was injected into the 3-neck flask, and keeps heating up to 180°C under Ar atmosphere. When the temperature remains at 180°C, OAm (3.6 moL) was added into the reaction solution. The preheated Cs-oleate solution (0.75 mL, 0.033 mmoL) was injected into the transparent precursor solution swiftly. After 5 seconds, the reaction mixture was cooled down using an ice bath.

Synthesis of nanospheres-like CsPbI₃ NCs (CsPbI₃-S₂ NCs): PbI₂ (0.54 mmoL, 0.1242 g), ODE (7.5 mL), the molar ratio of 4-DBSA and OAm (1.5, 2.37 moL:1.5 moL) were loaded into a 100 mL 3-neck flask and degassed for half an hour at 120°C under Ar flow. The temperature was increased to 160°C and OA (1.5 mL) was injected into the 3-neck flask, and keeps heating up to 180°C under Ar atmosphere. When the temperature remains at 180°C, OAm (3 moL) was added into the reaction solution. The preheated Cs-oleate solution (0.75 mL, 0.033 mmoL) was injected into the transparent precursor solution swiftly. After 5 seconds, the reaction mixture was cooled down using an ice bath.

Synthesis of four-leaf clover-like CsPbI₃ **NCs (CsPbI**₃-**S**₃ **NCs):** PbI₂ (0.54 mmoL, 0.1242 g), ODE (7.5 mL), the molar ratio of 4-DBSA and OAm (1, 2.37 moL: 2.3 moL) were loaded into a 100 mL 3-neck flask and degassed for half an hour at 120°C under Ar flow. The temperature was increased to 160°C and OA (1.5 mL) was injected into the 3-neck flask, and keeps heating up to 180°C under Ar atmosphere. When the temperature remains at 180°C, OAm (2.3 moL) was added into the reaction solution. The preheated Cs-oleate solution (0.75 mL, 0.033 mmoL) was injected into the transparent precursor solution swiftly. After 5 seconds, the reaction mixture was cooled down using an ice bath.

Synthesis of NPLs-like CsPbl₃ NCs (CsPbl₃-S₄ NCs): Pbl_2 (0.54 mmoL, 0.1242 g), ODE (7.5 mL), the molar ratio of 4-DBSA and OAm (0.79, 2.37 moL: 3 moL) were loaded into a 100 mL 3-neck flask and degassed for half an hour at 120°C under Ar flow. The temperature was increased to 160°C and OA (1.5 mL) was

injected into the 3-neck flask, and keeps heating up to 180°C under Ar atmosphere. When the temperature remains at 180°C, OAm (1.5 moL) was added into the reaction solution. The preheated Cs-oleate solution (0.75 mL, 0.033 mmoL) was injected into the transparent precursor solution swiftly. After 5 seconds, the reaction mixture was cooled down using an ice bath.

Synthesis of CsPbI₃ NCs nanorods (CsPbI₃-S₆ NCs): PbI₂ (0.54 mmoL, 0.1242 g), ODE (7.5 mL), the molar ratio of 4-DBSA and OAm (0.5, 2.37 moL: 4.6 moL) were loaded into a 100 mL 3-neck flask and degassed for half an hour at 120°C under Ar flow. The temperature was increased to 160°C and OA (1.5 mL) was injected into the 3-neck flask, and keeps heating up to 180°C under Ar atmosphere. The preheated Cs-oleate solution (0.75 mL, 0.033 mmoL) was injected into the transparent precursor solution swiftly. After 5 seconds, the reaction mixture was cooled down using an ice bath.

Characterizations: X-ray diffraction data of powder was recorded on Bruker D8 Advance using Nifiltered Cu K α radiation (λ = 1.542 Å). Fluorescence and absorption spectra were measured on Varian Cary Eclipse instrument and Shimadzu UV-3600, respectively. TEM measurements were carried out on a FEI Tecnai G20 with a Cu grid. X-ray photoelectron spectroscopy (XPS) measurements were performed using an achromatic Al K α source (1486.6 eV) and a double pass cylindrical mirror analyzer (ULVAC-PHI 5000 VersaProbe). FTIR results were measured with a Tensor-27 spectrometer. The absolute PLQY of NCs solution was determined using a Quantaurus-QY absolute photoluminescence quantum yield spectrometer (C11347-11, Hamamatsu Photonics, Japan).

Figure S1. The absorption data of Cs₄PbI₆ NCs, OA-CsPbI₃ and Dumbbell-shaped CsPbI₃ NCs.

Figure S2. The XRD patterns of OA-CsPbI₃ and OA-CsPbI₃ (more OA) NCs.

Figure S3. The FTIR curves of OA-CsPbI₃ and OA-CsPbI₃ (more OA) NCs.

Figure S4. The size distribution of rod and heads of dumbbell-shaped CsPbl₃ NCs.

Figure S5. XPS refined curves of (a) O 1s of OA-CsPbI₃ and (b) dumbbell-shaped CsPbI₃ NCs.

Figure S6. FTIR curve of Cs₄PbI₆ NCs.

Figure S7. FTIR curve of 4-DBSA.

Figure S8. Size distribution of (a) $CsPbI_3-S_1$, (b) $CsPbI_3-S_2$, (c) $CsPbI_3-S_3$, and (d) $CsPbI_3-S_4$ NCs by changing the molar ratio of 4-DBSA and OAm.

Figure S9. TEM image (left) and size distribution (right) of CsPbl₃ -S₆ NCs.

Figure S10. PLQY data of OA-CsPbl₃ and CsPbl₃-S_n NCs.

Figure S11. (a) XRD pattern and (b) PL spectrum of CsPbI₃-S₆ NCs.

Figure S12. TEM images of $CsPbI_3$ NCs by adding 4-DBSA ligands in the second nucleation stage (a) and only adding 4-DBSA in the first nucleation (b).

Figure S13. The photos of OA-CsPbI₃ and dumbbell-shaped CsPbI₃ NCs in natural light.

Figure S14 Time-dependent XRD patterns of (a) OA-CsPbI₃ NCs and (b) Dumbbell-shaped-CsPbI₃.