Supplementary Information

- 2 Figure S1. Absorbance spectra of the silver coating of the AuNR demonstrating a shift from 820
- 3 nm to 687 nm after synthesis
- 4

13

5 Table 1. Tabulated Nanorod Dimensions

- 15 Figure S3. TEM image transformed to a binary mask and subsequently segmented for nanorods
- 17 filtered by area size.
- 18 Table 2. Plasmonic properties comparing gold nanoparticles and silver coated nanoparticles at
- 19 the 505 cm⁻¹ peak.
- 20
- 21

Sample	Absorption (nm)	SERS Enhancement (counts)
AuNR	820 nm	5301.5
AuNR@Ag	687 nm	655.7

24 Supplementary Schematic 1. Illustration depicting TEM experimental workflow for localizing 25 AuNR@Ag inside of tobacco plants. The purple arrows indicate cell walls, and the blue arrows 26 show the chloroplasts inside of a cell.

27 Figure S4. Transmission electron microscopy micrograph of a tobacco leaf section treated with

- 28 AuNR@Ag. Red boxes indicate the areas that were imaged at higher magnifications in Figure 2.

- 36 37 Figure S5. Transmission electron microscopy micrograph of a tobacco leaf section treated with
- 38 AuNR@Ag. Red boxes indicate the areas where the AuNR@Ag are present. (B) Higher
- 39 magnification section of (A).

- 41
- Figure S6. XRF maps demonstrating the distribution of different elements in the leaf, including gold from the AuNR@Ag infiltrated into the leaf.

47 Figures S7. (a) XRF spectra from the numbered locations on the Au map of the leaf in the right

48 (b) panel. Red line is with a probe energy above the Au LIII edge (at 12,000eV), blue dotted line

49 is below the Au edge (at 11,900 eV). The top-right corner of the box around each number in the

50~ map points to the pixel at which the corresponding MCA scan was taken.

51

- 54 Figure S8. Two photon luminescence images of two whole leaf samples treated with AuNR@Ag
- 55 (A), (B) with 800nm excitation and detection in the 400-500 nm range. Leaves were scanned in x,
- 56 y and z using 25x objective. The maximum projection of the z-stack is displayed.

- 58 Figure S9. Raman spectra showing the difference between leaf tissue infiltrated with
- 59 AuNR@Ag-Cy7 and tissue not treated with particles. The characteristic peaks at 505 & 558 cm⁻¹
- 60 are only evident in the tissue treated with AuNR@Ag-Cy7.

61

a Tobacco Leaf Sample not treated with AuNR@Ag-Cy3

Cytoplasm-GFP (green)

AuNR@Ag-Cy3 Channel (red)

Overlay

b Non-GFP Transformed Tobacco treated with AuNR@Ag-Cy3

AuNR@Ag-Cy3

Cytoplasm-GFP (green)

AuNR@Ag-Cy3 Channel (red)

Overlay

- 63
- 64 Figure S10. GFP expressing tobacco leaf not treated with nanoparticles (B) Tobacco leaf not
- 65 transformed to express GFP infiltrated with AuNR@Ag-Cy3.

67 Figure S11. PA and US imaging system design. (a) Arrangement of PA imaging components. (b)

68 The inside view of the PA and US imaging system, including a dual-element wobbler transducer 69 for B-mode ultrasound (US) and a linear-array transducer with bilateral laser excitation for

70 photoacoustic computed tomography (PACT). Both transducers are mounted on the same

71 motorized stage with a fixed distance, allowing for automatic co-registration of images.

- 72
- 73 Figure S12. Point Scan and SERS setup schematic used to acquire SERS spectra and maps of the
- 74 leaves treated with AuNR@Ag.
- 75

Supplementary Note 1

- 77 The 3D spatial resolution for the confocal XRF images shown in Figure 5 is 2x2x2 microns³ and is
- 78 described in Experimental Section 4. 2x2x2 micron³ voxel resolution is capable of delineating individual
- 79 cells that are ~100-microns in size. There was not temporal component for the XRF-based
- 80 measurements as the sample was freeze-dried into a static state.
- 81

82 The spatial resolution of the photoacoustic system is approximately 0.45 mm along the lateral axis, 0.35

83 mm along the axial axis, and 1.7 mm along the elevational axis. At a single cross-sectional 2D imaging

84 slice, the temporal resolution of photoacoustic imaging is generally limited by the laser repetition rate

85 (in our case, 10 Hz). The spatial resolution of the B-mode ultrasound imaging is approximately 0.35 mm

86 along the lateral axis, 0.15 mm along the axial axis, and 0.38 mm along the elevational axis. A complete

87 3D B-mode ultrasound scan of the leaf takes approximately 1 minute.

88

89 The best spatial resolution of the TPL system using a 25x objective is sub-micron in plane and ~1.1um

- 90 (FWHM) out of plane or in the z-direction.¹ Thus, this system can resolve single cells as well as large
- 91 cellular structures such as nuclei and vacuoles. The temporal resolution can be as fast as ~30 frames per
- 92 second (512x512 images). This is enough for more precise temporal examination of biochemical
- 93 pathways, which has previously been studied on the timescale of hours to days.^{2, 3}
- 94

95	TPL cou	Ild be combined with Raman confocal microscopy to simultaneously track nanoprobe location	
96	and SEI	RS signal to investigate intracellular biochemical pathways in real-time. Raman mapping in this	
97	work h	as a spatial resolution that corresponds 600 μ m with a field of view of 6 mm, although higher	
98	resolutions have been achieved previously by our group 200 μ m. 4 The temporal resolution of the		
99	technic	ue depends on the rate of the acquisition of the SERS measurement which averages 5 minutes.	
100			
101		Supplementary Note 2	
102		Raman mapping of the SERS nanoprobes is designed to provide specific spectral information	
103	from dy	yes and biomolecules coated on the AuNR@Ag, but are not used to detect intracellular	
104	distribu	ition of nanorods within the leaf; this information is provided by XRF and TPL which have been	
105	used fo	r normalization. Comparatively, TPL has the best z-axis resolution and excellent x-y resolution,	
106	and wo	uld thus be able to more precisely determine intracellular nanoprobe location, as well as	
107	disting	uishing nanoprobes in different layers of plant cells.	
108			
109		Photoacoustic imaging, on the other hand, can provide 3D information of the optical absorption	
110	of molecules with spatial resolution and penetration depth comparable to that of ultrasound imaging.		
111	Furthermore, photoacoustic imaging can achieve penetration depths on the order of 1 cm, which is		
112	advantageous for imaging thicker parts of the plant such as stems or roots. This allows for the study of		
113	the biodistribution of both endogenous and exogenous molecules in-vivo and at many excitation		
114	wavelengths. Advantages of Raman mapping include the unique spectral fingerprint that is collected		
115	allowing for the distinguishing of biomolecules or dyes coated on a metallic biosensor. The SERS effect		
116	can increase Raman signals by many orders of magnitude and the production of sharp Raman peaks		
117	from molecules facilitate its use for multiplex biochemical analyses in a wide variety of biochemical		
118	applications. X-ray fluorescence imaging can achieve cellular resolution imaging and is the only		
119	technic	ue that can provide an elemental analysis of the sample and AuNR@Ag.	
120			
121			
122			
123		References	
124			
125			
126	1.	P. Vesely, <i>Scanning</i> , 2007, 29 , 91-91.	
127	2.	A. Raza Naqvi, S. Haseeb Khan, D. Mittal, H. Alshaya, M. Kazi and M. Sarwat, Saudi	
128		Journal of Biological Sciences, 2022, DOI: https://doi.org/10.1016/j.sjbs.2022.01.029,	
129		103157.	
130	3.	F. Betti, M. J. Ladera-Carmona, D. A. Weits, G. Ferri, S. Iacopino, G. Novi, B. Svezia,	
131		A. B. Kunkowska, A. Santaniello, A. Piaggesi, E. Loreti and P. Perata, Nature Plants,	
132		2021, 7, 1379-1388.	
133	4.	B. M. Crawford, P. Strobbia, H. N. Wang, R. Zentella, M. I. Boyanov, Z. M. Pei, T. P.	
134		Sun, K. M. Kemner and T. Vo-Dinh, ACS Appl. Mater. Interfaces, 2019, 11, 7743-7754.	
135			