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We elaborate on the theoretical formalism presented in the main text with further details per-
taining to the specific geometry of nanoribbons that have translational symmetry in one dimension,
for which we provide a prescription to obtain self-consistent solutions of the constitutive relations
that describe the linear and nonlinear optical response. We additionally summarize the second-
and third-order nonlinear conductivities of extended graphene obtained as perturbative solutions to
the Boltzmann transport equation. Finally, we present results for second-harmonic generation from
stacked graphene nanoribbon dimers that elucidate the roles of plasmon hybridization and lateral
positioning.
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S1. OPTICAL RESPONSE OF NANORIBBONS

The theoretical formalism presented in the main text to describe the optical response of composite two-dimensional
(2D) nanostructures applies to collections of arbitrary morphologies with sizes well below the wavelength of the
applied electromagnetic field (i.e., in the quasistatic limit). Here, we consider the specific case of a system of N
ribbons that is translationally invariant in ŷ, while ribbon j ∈ {1, 2, ..., N} of width Wj occupies a finite region
x ∈ {xj − Wj/2, xj + Wj/2} in the plane defined by z = zj , such that xj is the x-coordinate of the ribbon center.

A. Linear response

To linear order, we characterize the optical response of the 2D nanostructure ensemble by the scalar potential Φ(r)
produced in response to an external potential Φext(r), where a harmonic time dependence e−iωt is assumed. To exploit
the symmetry in ŷ, we decompose the scalar potential in plane waves characterized by wave vector q according to
Φ(r) = ϕ(x, z)eiqy, so that Eq. (1) in the main text becomes

ϕ(x, z)eiqy = ϕext(x, z)eiqy +
N∑

j=1

� ∞

−∞
dy′

� xj+Wj/2

xj−Wj/2
dx′ ρind

j (x′)eiqy′√
(x − x′)2 + (y − y′)2 + (z − zj)2

, (S1)
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where ρind
j is the 2D induced charge density in ribbon j. Invoking the continuity equation iωρind

j = ∇R · jj and Ohm’s
law jj = σ

(1,1)
j fjE, we find

ρind
j (x) = i

ω
σ

(1,1)
j (ω)

{
∂x[fj(x)∂xϕ(x, zj)] − q2fj(x)ϕ(x, zj)

}
, (S2)

such that the geometry of the ribbon is defined by fj(x) = 1 within the region of x occupied by ribbon j—where the
intrinsic linear conductivity is σ

(1,1)
j —and is zero otherwise. Combining Eqs. (S1) and (S2), we perform the integration

over y′ to obtain the self-consistent equation

ϕ(x, z) = ϕext(x, z)+2
N∑

j=1

iσ(1,1)
j

ω

� xj+Wj/2

xj−Wj/2
dx′K0

[
q
√

(x − x′)2 + (z − zj)2
]{

∂x′ [fj(x′)∂x′ϕ(x′, zj)] − q2fj(x′)ϕ(x′, zj)
}

.

The expression above for the potential in ribbon j is then recast into the form of Eq. (5) of the main text:

ϕj = ϕext
j +

N∑
j′=1

η
(1)
j′ V(q)

jj′ D(q)
j′ ϕj′ , (S3)

where the dimensionless parameter η
(1)
j = iσ(1,1)

j /ωWj contains dependencies on the intrinsic linear conductivity and
width, while the integral operator

V(q)
jj′ g(θ) = 2

� 1/2

−1/2
dθ′K0

[
q
√

(xjj′ + Wjθ − Wj′θ′)2 + z2
jj′

]
g(θ′) (S4)

and the Laplacian operator

D(q)
j g(θ) = ∂θ[fj(θ)∂θg(θ)] − q2W 2

j fj(θ)g(θ)

are expressed in terms of normalized x coordinates θ ∈ [−1/2, 1/2], with xjj′ ≡ xj − xj′ and zjj′ ≡ zj − zj′ defining
the center-to-center separation of ribbons j and j′ in the x̂ and ẑ directions, respectively. To solve Eq. (S3), we
discretize θ and the potential ϕj(θ) on a real space grid to construct a vector ϕ⃗ = (ϕ1, ϕ2, . . . , ϕN )T by concatenating
the vectors ϕj , such that ϕ⃗ satisfies the matrix equation

ϕ⃗ = (1 − M)−1
ϕ⃗ext, (S5)

where 1 denotes the identity matrix, M is a square block matrix with elements Mjj′ = η
(1)
j′ V(q)

jj′ D(q)
j′ , and ϕ⃗ext is defined

similarly to ϕ⃗. In the following subsection, we elaborate on the discretization procedure and matrix representation of
the operators V(q)

jj′ and D(q)
j for ribbons.

B. Real space discretization and matrix formalism

To solve Eq. (S3), we discretize θj ≡ x/Wj for x-coordinates in ribbon j into Lj elements on a one-dimensional
spatial grid θj,l =

{
θj,1, θj,2, . . . , θj,Lj

}
, so that the Coulomb operator becomes a matrix with elements

V(q)
jj′,ll′ = 2

� θj′,l′ +hj′ /2

θj′,l′ −hj′ /2
dθ′K0

[
q
√

(xjj′ + Wjθj,l − Wj′θ′)2 + z2
jj′

]
, (S6)

where hj = 1/(Lj − 1) quantifies the (uniform) spatial discretization, on which scale the function g(θ) in Eq. (S4) is
assumed to vary slowly, while the matrix representation of the Laplacian operator is

D(q)
j,ll′ = 1

2h2 [δl−1,l′(fj,l−1 + fj,l) − δll′(fj,l−1 + 2fj,l + fj,l+1) + δl+1,l′(fj,l+1 + fj,l)] − δll′q2W 2
j fj,l

for elements 1 < l < L, where fj,l ≡ fj(θj,l), and

D(q)
j,1l′ = 1

2h2 (fj,1 + fj,2)(−δ1l′ + δ2l′) − δ1l′fj,1q2W 2
j ,

D(q)
j,Ll′ = 1

2h2 (fj,L−1 + fj,L)(δL−1,l′ − δLl′) − δLl′fj,Lq2W 2
j ,



3

l = 1

l = 1

l = Lj

l = Lj’Ѵjj,ll’
Ѵj’j’,ll’

Ѵjj’,ll’j 

j’

Wj

Wj’

FIG. S1. Intra- and inter-ribbon coupling between discrete spatial elements. Ribbon j of width Wj is discretized in Nj

real space elements indexed by l which interact amongst themselves (red arrows) and with their counterparts in another ribbon
j′ (blue arrows) through the Coulomb operators Vjj′,ll′ containing any information pertaining to the inter-ribbon separation.

such that the normal current properly vanishes at the edges of each ribbon [1]. In Fig. S1 we present a schematic
illustration of the intra- and inter-ribbon interaction between discretized elements in ribbons j and j′. Under specific
circumstances, the integral of Eq. (S6) admits analytical solutions. In particular, for finite in-plane wave vector q and
co-planar ribbons, we take zjj′ = 0 to obtain

V
(q)

jj′,ll′ = π
∑

±
(±)|θjj′,ll′ ± h/2|

[
K0(Qj′ |θjj′,ll′ ± h/2|)L−1(Qj′ |θjj′,ll′ ± h/2|)
+K1(Qj′ |θjj′,ll′ ± h/2|)L0(Qj′ |θjj′,ll′ ± h/2|)

]
,

where Qj′ ≡ qWj′ , θjj′,ll′ ≡ (xjj′ + Wjθj,l − Wj′θj′,l′)/Wj′ , and Ln denotes the modified Struve function of order n
[2], while, for vanishing wave vector q = 0, Eq. (S6) is evaluated as

V
(0)

jj′,ll′ = 2
∑

±
(±)

{
(θjj′,ll′ ± h/2)

[
1 − log

√
(θjj′ll′ ± h/2)2 + z̃2

jj′

]
− z̃jj′ tan−1

(
θjj′,ll′ ± h/2

z̃jj′

)}
,

where z̃jj′ ≡ zjj′/Wj′ . The solution to Eq. (S3) is then obtained in terms of the elements ϕj,l = ϕj(θl) by concatenating
the vectors ϕj as ϕ⃗ = (ϕ1, ϕ2, . . . , ϕN )T (similarly for ϕ⃗ext) and defining the square block matrix comprised of matrices
Mjj′ = η

(1)
j′ V(q)

jj′ D(q)
j′ to write Eq. (S5). The potential satisfying Eq. (S3) can then be used to compute the associated

linear response from the induced dipole moment, and, as explained in the following section, is used to determine the
nonlinear response on the same real space grid.

C. Nonlinear response

Generally, the quantities that characterize the optical response of the 2D nanostructure ensemble can be decomposed
in perturbation orders n and frequency harmonics s of the external field according to

Φ(r, t) =
∞∑

n=1

n∑
s=−n

Φ(n,s)(r)e−isωt

for the potential, with components

Φ(n,s)(r) = Φext(r)δn,1(δs,−1 + δs,1) +
N∑

j=1

�
d3r′ ρ

(n,s)
j (R)
|r − r′|

δ(z′ − zj)

that yield the associated electric field E(n,s) = −∇Φ(n,s). Writing the nonlinear current within structure j as

j(n,s)
j = fjσ

(1,s)
j E(n,s) + j(n,s)

j,NL ,

where the first term on the left-hand side accounts for the linear response to the nonlinear field E(n,s) generated in the
structure by the source current j(n,s)

j,NL associated with a particular nonlinear process, we invoke the continuity equation
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∇R · j(n,s)
j = isωρ

(n,s)
j to obtain the self-consistent integro-differential equation

ρ
(n,s)
j (R) = ρ

(n,s)
j,NL (R) + i

sω
∇R ·

fj(R)σ(1,s)
j

N∑
j′=1

∇R

�
dy′

� xj′ +Wj′ /2

xj′ −Wj′ /2
dx′ ρ

(n,s)
j′ (R)√

(x − x′)2 + (y − y′)2 + (zj − zj′)2

,

(S8)
where ρ

(n,s)
j,NL = −(i/sω)∇R · j(n,s)

j,NL . For an ensemble of nanoribbons with translational invariance in ŷ, we follow the
procedure described above for the linear optical response to express Eq. (S8) in the form

ρ
(n,s)
j = ρ

(n,s)
j,NL + η

(s)
j D(sq)

j

∑
j′

Wj′

Wj
V(sq)

jj′ ρ
(n,s)
j′ , (S9)

where η
(s)
j = iσ(1,s)/sωWj is a dimensionless parameter. The solution to Eq. (S9) is then obtained by adopting

the discretization procedure discussed in the previous sections and expressing the combined charge density ρ⃗ (n,s) =(
ρ

(n,s)
1 , ρ

(n,s)
2 , . . . , ρ

(n,s)
N

)T
in a matrix equation as

ρ⃗ (n,s) = (1 − N )−1
ρ⃗

(n,s)
NL ,

where the block matrix N is comprised of matrices Njj′ = η
(s)
j Wj′W −1

j D(sq)
j V(sq)

jj′ .

S2. NONLINEAR OPTICAL RESPONSE OF FREE ELECTRONS IN GRAPHENE

The optical response of highly-doped graphene is well described within the theoretical framework of the Boltzmann
transport equation in the relaxation-time approximation [3], which yields compact analytical expressions for the
intrinsic nonlinear optical conductivity associated with intraband charge carrier motion in the carbon monolayer. In
what follows we adopt the procedure of Ref. [4] to derive the nonlinear optical conductivity in both the second- and
third-order response to monochromatic illumination E(R, t) = E(R)e−iωt + c.c., where R = (x, y) denotes the plane
occupied by an infinitely-extended graphene sheet. The equation of motion for the 2D electron distribution fk(R, t)
is

dfk

dt
= ∂fk

∂t
+ ∇pfk · dp

dt
+ ∇Rfk · dR

dt
= −γ(fk − f

(0)
k ), (S10)

where the electron momentum p = ℏk is related to the in-plane wave vector k, and we include a phenomenological
damping term that relaxes the system to an equilibrium state f

(0)
k at a rate γ = τ−1. Inserting the Lorentz force in

Newton’s second law, we write the rate of change of the momentum as

dp
dt

= −e

[
E(R, t) + 1

c

dR
dt

× B(R, t)
]

,

while the electron velocity is governed by the linearized dispersion relation of electrons in the vicinity of the Dirac
points in graphene dR/dt = ±vFk/k, where the positive (negative) sign corresponds to electron (hole) doping.
Combining the above expressions, Eq. (S10) becomes

∂fk

∂t
= e

ℏ

[
E(R, t) ± vF

c

k
k

× B(R, t)
]

· ∇kfk ∓ vF
k
k

· ∇Rfk − γ
(

fk − f
(0)
k

)
, (S11)

the solution of which is expanded in powers of the external field according to

fk(R, t) =
∞∑

n=0

n∑
s=−n

f
(n,s)
k (R) e−isωt, E(R, t) =

∞∑
n=1

n∑
s=−n

E(n,s)(R) e−isωt, (S12)

such that the perturbation order n and harmonic index s necessarily satisfy |s| ≤ n, while f
(n,−s)
k = (f (n,s)

k )∗ and
E(n,−s) = (E(n,s))∗. Inserting Eq. (S12) into Eq. (S11) and equating terms of order n > 0 and harmonic s, we find

f
(n,s)
k = ie

ℏ

(
sω + iγ ± ivF

k
k

· ∇R

)−1 n∑
n′=1

n′∑
s′=−n′

Ẽ(n′,s′) · ∇kf
(n−n′,s−s′)
k ,
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where

Ẽ(n,s) = E(n,s) ∓ ivF

sω

[
∇R

(
k
k

· E(n,s)
)

−
(

k
k

· ∇R

)
E(n,s)

]
(S13)

is obtained by eliminating the magnetic field B(n,s) = (ic/sω)∇r × E(n,s) in favor of the electric field.
Crucially, nonlocal effects are incorporated in the optical response by expanding(

sω + iγ ± ivF
k
k

· ∇R

)−1
≈ 1

sω + iγ

[
1 ∓ ivF

sω + iγ
k
k

· ∇R + . . .

]
and retaining only up to the leading term in ∇R to write

f
(n,s)
k = ie

ℏ
Dsω

(
1 ∓ ivFDsω

k
k

· ∇R

) n∑
n′=1

n′∑
s′=−n′

Ẽ(n′,s′) · ∇kf
(n−n′,s−s′)
k , (S14)

where Dsω = (sω + iγ)−1.
The contribution to the in-plane current j(R, t) =

∑∞
n=1

∑n
s=−n j(n,s)(R)e−isωt of order n and harmonic s in the

external field is found by integrating over all electron momenta according to

j(n,s) = ∓evF

�
d2k

(2π)2
k
k

f
(n,s)
k . (S15)

Combining Eqs. (S14) and (S15), we isolate the self-consistent n = n′ term to write the current as

j(n,s) = ∓ ie2vF

4π2ℏ
Dsω

�
d2kk

k

(
1 ∓ ivFDsω

k
k

· ∇R

)
Ẽ(n,s) · ∇kf

(0)
k + j(n,s)

NL , (S16)

where

j(n,s)
NL = ∓ ie2vF

4π2ℏ
Dsω

n−1∑
n′=1

n′∑
s′=−n′

�
d2kk

k

(
1 ∓ ivFDsω

k
k

· ∇R

)
Ẽ(n′,s′) · ∇kf

(n−n′,s−s′)
k (S17)

is the intrinsic nonlinear response constructed from lower perturbation orders n′ < n. From the unperturbed electronic
distribution of graphene at zero temperature f

(0)
k = 4Θ(±kF ∓ k), where kF = EF/ℏvF is the Fermi wave vector and

the factor of 4 accounts for spin and valley degeneracies, we evaluate ∇kf
(0)
k = ∓4(k/k)δ(kF −k) and insert Eq. (S13)

to write Eq. (S16) as

j
(n,s)
i = σ

(1,s)
ij E

(n,s)
j + j

(n,s)
NL,i , (S18)

here expressed using the Einstein summation convention for vector components spanning the x and y directions such
that {i, j} ∈ {x, y}. The first term arises from the n′ = n contribution in the summation of Eq. (S14) and describes
the linear response to the induced nonlinear field at harmonic s mediated by the conductivity

σ
(1,s)
ij = ie2

πℏ2
EF

sω + iγ δij ,

whereas the second term (contributing when n > 1) is

j
(n,s)
NL,i = ∓ ie2vF

4π2ℏ
Dsω

n−1∑
n′=1

n′∑
s′=−n′

�
d2k



(
δij

k
− kikj

k3

)
E

(n′,s′)
j f

(n−n′,s−s′)
k

∓ivFDsω

(
δilkj

k2 + δjlki

k2 − 2kikjkl

k4

)
∂R,j

(
E

(n′,s′)
l f

(n−n′,s−s′)
k

)
∓ ivF

s′ω

(
δilkj

k2 + δjlki

k2 − 2kikjkl

k4

)(
∂R,lE

(n′,s′)
j − ∂R,jE

(n′,s′)
l

)
f

(n−n′,s−s′)
k

.

(S19)
In obtaining the current of Eq. (S18), terms beyond linear order in ∇R are omitted, while the k-space integration is
performed according to the procedure of Ref. 4 (i.e., integrating by parts in Eq. (S17) to avoid derivatives of δ(kF −k)),
with odd-rank tensors vanishing in the azimuthal integration.
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For the current associated with second-harmonic generation (SHG), we choose n = s = 2 in Eq. (S19) to recover
the result of Eq. (11) in the main text:

j(2,2)
NL = σ

(2,2)
A E(1,1)

(
∇R · E(1,1)

)
+ σ

(2,2)
B

(
E(1,1) · ∇R

)
E(1,1) + σ

(2,2)
C ∇R

(
E(1,1) · E(1,1)

)
, (S20)

where

σ
(2,2)
A = ∓S(2)D2ωDω(3Dω + 4D2ω)

σ
(2,2)
B = ∓S(2)D2ωDω

(
−Dω + 4D2ω − 4

ω

)
σ

(2,2)
C = ∓S(2)D2ωDω

(
−Dω

2 − 2D2ω + 2
ω

)
,

with the prefactor S(2) ≡ ie3v2
F/4πℏ2.

Up to this point, the derivation of optical response functions describing free electrons in graphene subject to
monochromatic illumination parallels that presented in Ref. [4], where the third-order conductivity is also reported
in the local limit, i.e., retaining only the first term in Eq. (S18) for n = s = 3. Here we supplement the result for
third-harmonic generation (THG) obtained in Ref. [4] by including nonlocal terms in Eq. (S18). After performing
straightforward but lengthy mathematical manipulations, we obtain the result presented in Eq. (13) of the main text,

j(3,3)
NL = σ(3,3)E(1,1)

(
E(1,1) · E(1,1)

)
+ j(2,{1,2})

NL , (S22)

where σ(3,3) = (3ie4v2
F/4πℏ2EF)D3ωD2ωDω is the local third-order THG conductivity and

j(2,{1,2})
NL = σ

(2,1,2)
A E(1,1)

(
∇R · E(2,2)

)
+ σ

(2,2,1)
A E(2,2)

(
∇R · E(1,1)

)
+ σ

(2,1,2)
B

(
E(1,1) · ∇R

)
E(2,2) + σ

(2,2,1)
B

(
E(2,2) · ∇R

)
E(1,1)

+ σ
(2,1,2)
C

∑
j=x,y

E
(1,1)
j ∇RE

(2,2)
j + σ

(2,2,1)
C

∑
j=x,y

E
(2,2)
j ∇RE

(1,1)
j

+ σ
(2,1,2)
D ∇R

(
E(1,1) · E(2,2)

)
,

with

σ
(2,s1,s2)
A = ∓ S(2)D(s1+s2)ω

[
3D2

s2ω + 2D(s1+s2)ω(Ds1ω + Ds2ω)
]

,

σ
(2,s1,s2)
B = ∓ S(2)D(s1+s2)ω

[
2D(s1+s2)ω(Ds1ω + Ds2ω) − D2

s2ω − 4Ds1ω

s2ω

]
,

σ
(2,s1,s2)
C = ∓ S(2)D(s1+s2)ω

(
4Ds1ω

s2ω
− D2

s2ω

)
,

σ
(2,s1,s2)
D = ± 2S(2)D2

(s1+s2)ω(Ds1ω + Ds2ω).

The second term in Eq. (S22) accounts for the second-order mixing of the second-harmonic and fundamental near
fields, and corresponds to the so-called cascaded contribution to THG.

Note that for impinging light polarized entirely along x̂ and without any oblique optical momentum component in
ŷ, such that q = 0, the nonlinear current of Eqs. (S20) and (S22) reduce to

j
(2,2)
NL,x = ∓S(2)D2ωDω(Dω + 4D2ω)E(1,1)

x ∂xE(1,1)
x

and

j
(3,3)
NL,x = σ(3,3)

[
E(1,1)

x

]3
∓S(2)D3ω

{[
D2

2ω + 2D3ω(D2ω + Dω)
]
E(1,1)

x ∂xE(2,2)
x +

[
D2

ω + 2D3ω(D2ω + Dω)
]
E(2,2)

x ∂xE(1,1)
x

}
.
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S3. HYBRIDIZATION EFFECTS IN STACKED RIBBONS

If the illumination frequency is fixed to the dipole plasmon resonance of ribbon j = 1, a second ribbon can enhance
harmonic generation at order s in a ribbon dimer when the condition EF2/EF1 = s2W2ηm/W1η1 is satisfied, where
ηm denotes the eigenvalue associated with the mth-order ribbon eigenmode. However, when ribbons are in close
proximity, hybridization effects leads to shifts in the resonance frequencies that change the optimal conditions for
harmonic generation in the (Wj ,EFj) parameter space. In Fig. S2 we present the SHG susceptibility of the stacked
ribbon dimer considered in Fig. 2 of the main text, for which the j = 1 ribbon has width W1 = 160 nm and doping EF1,
while the parameters of ribbon j = 2 are varied. In particular, panels (a-d) are obtained for separations d = 2.5 nm,
d = 5 nm, d = 25 nm, and d = 100 nm, respectively, while the dashed, dot-dashed, and solid lines indicate the
ωp1 = ωp2/2 resonance conditions for the m = 1, m = 2, and m = 3 modes, respectively.

a) d)c)b)

FIG. S2. Plasmon hybridization in second-harmonic generation from stacked ribbon dimers. SHG susceptibility
of a stacked ribbon pair separated by (a) d = 2.5 nm, (b) d = 5 nm, (c) d = 25 nm, and (d) d = 100 nm when the illumination
frequency is fixed to the lowest-order dipolar plasmon resonance of ribbon j = 1 with W1 = 160 nm and EF1 = 0.4 eV while the
width and doping of ribbon j = 2 are varied. The dashed, dot-dashed, and solid curves indicate the SHG resonance condition
for the eigenmodes η1, η2, and η3, respectively. The ribbons are self-standing in vacuum.

Next, we seek to identify the optimal horizontal positioning of two stacked graphene ribbons by changing center-
to-center distance ∆x in the x̂-direction, such that the SHG response vanishes due to symmetry when ∆x = 0. In
Fig. S3(a-d), we consider the effect of horizontal positioning for two ribbons of common doping EF1 = EF2 = 0.4 eV
and different widths W1 = 160 nm and W2 = 40 nm for vertical separations (b) d = 5 nm, (c) d = 25 nm, and (d)
d = 100 nm, while in Fig. S3(e-f) we choose two ribbons of common width W1 = W2 = 100 nm and different doping
levels EF1 = 0.2 eV and EF2 = 0.8 eV for separations (e) d = 2.5 nm, (f) d = 5 nm, and (g) d = 25 nm.
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a) b) c) d)

e) f) g)

FIG. S3. Horizontal positioning in second-harmonic generation from stacked ribbon dimers. (a) Schematic
illustration of two parallel graphene ribbons with widths W1 and W2 doped to EF1 and EF2 that are separated by a vertical
distance d and offset horizontally by the center-to-center distance ∆x. (b-d) SHG response of two ribbons with widths W1 =
160 nm and W2 = 40 nm and doping levels EF1 = EF2 = 0.4 eV as a function of excitation energy and horizontally shifted
distance ∆x for (b) d = 5 nm, (c) d = 25 nm, and (d) d = 100 nm. (e-g) Similar to panels (b-d), but for two ribbons of widths
W1 = W2 = 100 nm and doping levels EF1 = 0.2 eV and EF2 = 0.8 eV. All results have been computed for damping ℏγ = 0.01 eV
and permittivity ϵ = 1.
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