Functionalyzed Polymer Modified Buried Interface for Enhanced Efficiency and Stability of Perovskite Solar Cells

Hanjun Zou1, Huan Bi2,*, Yongheng Chen3, Mengna Guo4, Wenjing Hou4, Pengyu Su5, Kai Zhou1, Chuanyao Yang1, Xiangnan Gong1, Li Xiao6, Li Liu3,*

1 Analytical and Testing Center, Chongqing University, Chongqing 401331, China.
2Faculty of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan.
3 Joint Laboratory for Extreme Conditions Matter Properties, School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, China
4 Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, China
5 School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China
6 Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China.

Corresponding Author (H. Bi, and L. Liu)

e-mail: hbi.trans.sci@uec.ac.jp
e-mail: liuli_phy@swust.edu.cn
Experimental Section

Materials and solvents

SnO\textsubscript{2} colloidal solution (15 wt% in water) was brought from Alfa Aesar. Lead (II) bromide (PbBr\textsubscript{2}, 99.9%), Formamidine hydroiodide (FAI, 99.9%), bis(trifluoromethane) sulfonimide lithium salt (Li-TFSI, 99%), 2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-OMeTAD, 99.86%) and 4-tert-butyl pyridine (tBP, 99%) were purchased from Advanced Election Technology CO., Ltd. Lead (II) iodide (PbI\textsubscript{2}, 99.99%), Methylammonium bromide (MABr, 99.9%), lead (II) chloride (PbCl\textsubscript{2}, 99.99%) and methylamine hydrochloride (MACl, 99.5%) were purchased from Xi'an Polymer Light Technology Corp. Cesium iodide (CsI, 99.99%) and Rubidium iodide (RbI) were obtained from Aladdin. Povidone-iodine (PV-I) was got from Macklin. Chlorobenzene (CB, >99.9% purity), N, N-dimethylformamide (DMF, 99.8%) and dimethyl sulfoxide (DMSO, 99.8%) were purchased from Sigma-Aldrich. All the chemicals were used without further purification.

Device Fabrication:

Laser patterned ITO glasses (7~9 Ω per square) were ultrasonically cleaned with detergent water and ethanol for 20 min in sequence. After being blown dry by nitrogen (99.99%), the ITO was treated by ultraviolet ozone (UV-O\textsubscript{3}) for 20 min. Then, the SnO\textsubscript{2} colloidal solution was prepared by mixing the SnO\textsubscript{2} solution and deionized water at a volume rate of 1/3. Diluted SnO\textsubscript{2} colloidal solution was spin-coated on the ITO substrates at 3000 rpm for 30 s and then the SnO\textsubscript{2} film was annealed at 150 °C for 30 min. After cooling down to room temperature and then treated by UV-O\textsubscript{3} for 20 min. For PV-I treated, different concentrations of PV-I (0, 0.2, 0.5, and 1 mg/mL) were dissolving in DMSO, and then 30 µL of PV-I was spin-coated onto the SnO\textsubscript{2} film at a speed of 5000 rpm for 30s without further annealing. Then, all substrates were transferred to an argon-filled glovebox for perovskite deposition. The 1.55 M perovskite precursor solution was prepared by dissolving FAI of 248.16 mg, CsI of 19.73 mg, RbI of 6.58 mg, PbI\textsubscript{2} of 682.73 mg, and PbBr\textsubscript{2} of 8.53 mg PbCl\textsubscript{2} of 12.74 mg, and MACl (additive) of 35 mg in the mixed solvents of DMF and DMSO ($V\text{DMF} : V\text{DMSO} = 4 : 1$). The as-prepared perovskite precursor solution was filter by the 0.22 µm PTFE filter before use. The perovskite film was deposited by the consecutively spin-coating process at 4000 rpm for 30 s where 80 µL CB antisolvent was dripped on perovskite films at 16 s before
ending the program, and the film was then annealed at 130 °C for 30 min. The Spiro-OMeTAD solution was prepared by mixing 72.3 mg Spiro-OMeTAD, 28.8 µL of 4-tert-butyl pyridine (tBP) and 17.5 µL of lithium bis(trifluoromethane sulfonyl)imide (Li-TFSI) stock solution (520 mg Li-TFSI in 1 mL acetonitrile) in 1 mL CB. Subsequently, 20 µL Spiro-OMeTAD solution was spin-coated onto the perovskite films at 4000 rpm for 33 s to form the hole transport layer. Finally, about 100 nm metal counter electrode was thermally evaporated on the top of Spiro-OMeTAD film under a vacuum of 3 × 10⁻⁵ Pa through using a shadow mask.

Characterization:

$J-V$ curves were obtained using a solar simulator equipped and a Keithley 2400 source meter, and the black metal mask was employed to define the effective active area of the device to be 0.1 cm². $J-V$ curves were measured from -0.01 V to 1.15 V (forward scan) or from 1.15 V to -0.01 V (reverse scan) with a scan rate of 110 mV/s. The PCE of the PSCs was tested under air and dark conditions. XRD, Polar diagram and grazing incidence X-ray diffraction (GIXRD) patterns were collected using a PANalytical Empyrean diffractometer equipped with a Cu K$_\alpha$ radiation ($\lambda = 1.54056$ Å). XPS measurements were performed on a Thermo-Fisher ESCALab 250Xi system with a monochromatized Al K$_\alpha$ under the pressure of 5.0×10⁻⁷ Pa. Fourier transformed infrared (FTIR) spectra were obtained on an FTIR spectrometer (Thermo Fisher Scientific). UV–Vis spectra were measured on an Agilent 8453 UV-Vis G1103A spectrometer. PL and TRPL were recorded by Edinburgh FLS1000, where the excitation wavelength of TRPL was provided by a 450 nm laser. SEM images were performed on SEM (JXA-8530F Plus).
Figure S1 The structures of the PV-I.
Figure S2 FTIR spectra of the SnO$_2$ without or with PV-I modification.
Figure S3 FTIR spectra of the pure perovskite and perovskite modified by PV-I.
Figure S4 Tauc plots of the perovskite film with or without PV-I modification.
Figure S5 Grain size distribution statistics with the perovskite film (a) without and (b) with PV-I modification.
Figure S6 Light-intensity-dependent V_{OC} of the control and target devices.
Figure S7. (a) J_{SC}, (b) V_{OC}, and (c) FF statistical diagrams of the devices modified by different concentrations of PV-I. The statistical data were collected from 20 cells for each concentration.
Figure S8 PCE evolution of the devices based on SnO$_2$ without and with PV-I modification aged under one sun illumination where the devices were located in the glovebox.
Table S1 Fitting results from TRPL kinetics in Figure 4b.

<table>
<thead>
<tr>
<th></th>
<th>Glass/PVK</th>
<th>Glass/PV-I/PVK</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1 (ns)</td>
<td>134.90</td>
<td>30.59</td>
</tr>
<tr>
<td>%</td>
<td>28.7</td>
<td>12.0</td>
</tr>
<tr>
<td>τ_2 (ns)</td>
<td>447.56</td>
<td>911.45</td>
</tr>
<tr>
<td>%</td>
<td>71.2</td>
<td>87.9</td>
</tr>
<tr>
<td>τ_{ave} (ns)</td>
<td>413.7</td>
<td>907.4</td>
</tr>
</tbody>
</table>
Table S2 Fitting results from TRPL dynamics in Figure 4d.

<table>
<thead>
<tr>
<th></th>
<th>ITO/SnO$_2$/PVK</th>
<th>ITO/SnO$_2$/PV-I/PVK</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1 (ns)</td>
<td>66.87</td>
<td>12.13</td>
</tr>
<tr>
<td>%</td>
<td>79.4</td>
<td>77.7</td>
</tr>
<tr>
<td>τ_2 (ns)</td>
<td>264.29</td>
<td>144.91</td>
</tr>
<tr>
<td>%</td>
<td>20.6</td>
<td>22.3</td>
</tr>
<tr>
<td>τ_{ave} (ns)</td>
<td>166.9</td>
<td>114.7</td>
</tr>
</tbody>
</table>