Single-atom cobalt integrated flexible sensor for simultaneous detection of dihydroxybenzene isomers

Guang Xuan Hu^{1,2,#}, Qianghai Rao^{1,#}, Ge Li^{1,2}, Yan Zheng¹, Yuhang Liu¹, Chunxian Guo^{1.3}, Fang Xin Hu^{1,3*}, Hong Bin Yang^{1,3*}, Feng Chen^{1,3*}

¹ School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, JiangSu Province, 215009, China

² School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, JiangSu Province, 215009, China

³ Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, JiangSu Province, 215009, China

[#]Equal contribution

Fig. S1. (a) XPS spectrum of SA-Co/NG. (b) XPS spectrum of GO (c) XPS spectrum of NG

Fig. S2. The characterization of modification process (step by step) of SA-Co/NG/GCE through (a) CV and (b) EIS.

Fig. S3. DPV parameter optimization

Fig. S4. CV response curves of bare electrode to bare PBS and a mixture of 0.5 mM HQ, CC and RS

Fig. S5. DPV response curves of Co_3O_4 of 0.5 mM HQ, 0.5 mM CC and 0.5 mM RS in 0.5 M PBS

Fig. S6. CV response curves of SA-Co/NG to bare PBS, 0.5 mM HQ, 0.5 mM CC, 0.5 mM RS and a mixture of 0.5 mM HQ, CC and RS

Fig. S7. (a) CV response curves of SA-Co/NG to 0.1 mM HQ, (b) 0.1 mM CC, (c) 0.1 mM RS at different scan rates

Fig. S8. Curve of peak potential and pH value

Fig. S9. (a~c) CV response curves of SA-Co/NG to different concentrations of RS, HQ and CC alone

Fig. S10. (a) DPV response curves of SA-Co/NG with different concentrations of HQ under the condition of constant concentrations of CC and RS; (b) DPV of SA-Co/NG with different concentrations of CC under constant concentrations of HQ and RS Response curve; (c) DPV response curve of RS with different concentrations of SA-Co/NG under a certain concentration of HQ and CC

Sensing	Linear Range(µM)			LOD (nM)			Ref.
materials	HQ	CC	RS	HQ	CC	RS	
NG	5–30, 30–200	5-200		380	1000		[1]
CNT	10-1000	20-1000	50-1000	1200	2710	5640	[2]
NCNF	1–400	1-400	2-500	300	400	800	[3]
NCNTFs	0.8–200	0.8-120	_	170	120		[4]
NDSBAC	0.5-300	0.5-300		110	90	_	[5]
BG	5-100	1-75	_	300	200		[6]
N-P-C	5-400	5-400		980	610	_	[7]
N, S-AGR	0.1–10 , 10–70	1-10, $10-70$		30	150	_	[8]
N, S-MPC	1-110	1-110	_	56	209		[9]
SA- Co/NG@C/PET	0.50–4950, 4950–31745	0.50–1567, 1567–5909	0.5-153.5	167	167	167	This work

 Table S1. Comparison of the electrochemical sensing performance for HQ, CC and RS.

References

- 1. H.-L. Guo, S. Peng, J.-H. Xu, Y.-Q. Zhao and X. Kang, *Sens. Actuators B Chem.* 2014, **193**, 623-629.
- J. P. Dong, X. M. Qu, L. J. Wang, C. J. Zhao and J. Q. Xu, *Electroanal*. 2008, 20, 1981-1986.
- 3. J. Huang, X. Zhang, L. Zhou and T. You, Sens. Actuators B Chem. 2016, 224, 568-576.
- 4. X. Zheng, Y. Hu, H. Li, B. Han, R. Lin and B. Huang, J. Electroanal. Chem. 2020, 861.
- 5. X. Zheng, R. Fan, Y. Hu, H. Zhong, X. Yang, R. Lv, X. Yang and B. Huang, *Mater. Chem. Phys.* 2020, **242**.
- 6. Y. Z. Zhang, R. X. Sun, B. M. Luo and L. J. Wang, *Electrochim. Acta* 2015, **156**, 228-234.
- 7. Y. Ma, Z. P. Cao, Y. Wang, Y. Xia, C. C. He, L. L. Wang, S. S. Bao, P. M. Yin, L. L. Wang, J. Gao, H. Wang and Z. Yin, *Int. J. Electrochem. Sci.* 2019, **14**, 3916-3931.
- 8. L. L. Xiao, J. Yin, Y. C. Li, Q. H. Yuan, H. J. Shen, G. Z. Hu and W. Gan, *Analyst* 2016, 141, 5555-5562.
- R. Xu, L. Xiao, L. Luo, Q. Yuan, D. Qin, G. Hu and W. Gan, J. Electrochem. Soc. 2016, 163, B617-B623.