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S1 Twistable Worm Like Chain

Here we show that the use of the twistable Worm Like Chain (tWLC) for the computation
of the twist stretch coupling yields imaginary values of g for certain {(S, lP )} parameter-
izations. The explicit functional form of g from the tWLC reads1

g(f) = ±

√√√√SC − fC

[
x

L0

− 1 +
1

2

√
kBT

flP

]−1

(S1)

where S and C are the stretch and twist moduli, L0 is the equilibrium contour length, kBT
is the thermal energy, lP is the persistence length and g is evaluated at experimentally
measured {(x, f)} points,1 being x the extension and f the stretching force.

First note that, since g appears solely as a quadratic term in the tWLC, the solution
in Eq. S1 has not a defined sign, and its choice needs to be based on complementary
observations, e.g. the correlation between extension and twist. Computing a trend for
g(f) via the tWLC thus requires a previous notion on what is its precise behavior, so that
the sign is selected accordingly.

However, as we discussed in the main text, the main problem is that certain values of
S and lP available in the literature would make the argument of the first square root in
Eq. S1 negative, thus providing imaginary - and therefore unacceptable - values of g(f).
We show this by employing the experimental data {(x, f)} from Ref.1 and computing
g(f) over a discretized force-extension domain with approximately equal spacing between
x points for stretchings ranging from 10 to 50 pN , and then computing the % of such
domain that provides imaginary values of g(f). We repeat such process for a range of S
and lP containing values available in the literature, and we label as acceptable the {(S, lP )}
parameterizations that provide functional forms with more than 50% of the discretized
domain mapping into real values of g(f).

Fig. S1 (b) shows the result for L0 = 2.85 µm. The white region corresponds to the
acceptable parameterizations. The red dot points the numerical fit to Eq. S1 achieved
from experimental data reported in Ref.1 It is clear that there is only a narrow range of
these parameters that provides acceptable values of g(f) via the tWLC. Additionally, we
perform the same plot for L0 = 2.83 µm (Fig. S1 a), and L0 = 2.87 µm (Fig. S1 c), which
evinces the noticeable sensitivity of the applicability of the tWLC model on the value of
L0.
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Figure S1: Acceptable {(S, lP )} parameterizations (white regions), i. e. those with more
than 50 % of {(x, f)} domain that provides real values of g(f). C = 440 pNnm2 as used
by Gross et al.1 (a) L0 = 2.83 µm. (b) L0 = 2.85 µm, obtained from fit in Gross et al.,1

with the other fitting parameters pointed out by the red dot. (c) L0 = 2.87 µm, the value
originally used by Gross et al.1 to get g(f).

S2 Elastic parameters from force-extension curves

In this section, we demonstrate how the naive employment of linear fits of force-extension
curves to extract the effective stretch modulus, S̃, modulus would result in a systematic
error on the estimated value of the force-dependent elastic parameter. Henceforth, let us
call this method the Linear Fit Approach (LFA).

To illustrate this point, let S̃(f) be a monotonically non-decreasing function of f , and

we apply a straightforward two points LFA, being these (∆x1, f1, S̃1) and (∆x2, f2, S̃2).

Then ∆x2 > ∆x1 and S̃2 ≥ S̃1, provided that f2 > f1.

Then, following the methodology of the LFA, we have that the effective stretch modulus
estimated this way would be

S̃LFA =
L0(f2 − f1)

< ∆x2 > − < ∆x1 >
=

S̃1S̃2(f2 − f1)

f2S̃1 − f1S̃2

As S̃1 > 0, S̃2 > 0, S̃LFA > 0 and f2 > f1, the denominator f2S̃1 − f1S̃2 must also be
larger than zero. The previous may be rearranged as

S̃LFA

S̃2

= 1 +
f1(S̃2 − S̃1)

f2S̃1 − f1S̃2

(S2)

which must be larger or equal to 1 by the hand of the preceding arguments. This results
in S̃LFA ≥ S̃2 ≥ S̃1, meaning that for a monotonically non-decreasing S̃(f), the effective
stretch modulus measured through the LFA is larger or equal than the largest value of
S̃(f) within the force domain at which we measure < ∆x >. The argument can be

adapted straightforwardly to the case of non-increasing S̃(f), which would lead to an
underestimation of the elastic constant.
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S3 Force-dependent fluctuations approach

In this section, we provide a detailed derivation of the equation that relates the fluctua-
tions of the deformation modes with the elastic parameters of the model.

As indicated in the main text, the Elastic Rod Model (ERM) comprises an energy com-
posed of second order monomials of the deformation modes, where the leading coefficients
are the elastic parameters of the model. If we denote every deformation mode by integers
i, j ∈ {1, 2, 3, ..., N}, being N the total number of deformation modes, then we can write
the ERM energy as

E(q̄) =
1

2

N∑
i

N∑
j

kij∆qi∆qj −
∑
i

γi∆qi (S3)

Being q̄ = (q1, q2, ..., qN), so that the energy is a function of the coordinates qi. Besides,
kij are the elastic parameters. If i = j, we call kii the elastic modulus of the deformation
mode i. On the contrary, if i ̸= j, we call 1

2
(kij + kji) the coupling term between the

deformation modes i and j.

In Eq. S3, γi represents a generalized mechanical stress applied to the deformation mode
i, while ∆qi is the difference of a quantity assigned to the deformation mode and its
equilibrium value. This equilibrium value is taken as the conformational average of that
measure of the deformation mode in the absence of mechanical stresses.

The derivative of E(q̄) in Eq. S3 with respect to an arbitrary coordinate qβ yields

∂E(q̄)

∂qβ
=

1

2

N∑
i

(kiβ + kβi)∆qi − γβ (S4)

We then proceed by taking the mean value of Eq. S4 times an arbitrary coordinate ∆qα.
The mean value of the right hand equals δαβkBT , courtesy of the generalized equipartition
theorem 〈

qα
∂E(q̄)

∂qβ

〉
= δαβkBT (S5)

where kBT is the thermal energy of the system and δαβ is the Kronecker delta. We
rearrange properly the resulting expression to achieve〈

∆qα
∂E(q̄)

∂qβ

〉
=

1

2

[
N∑
i

⟨∆qα∆qi⟩ kiβ +
N∑
i

kβi ⟨∆qi∆qα⟩

]
− ⟨∆qα⟩ γβ = δαβkBT (S6)

This ordering is possible since ⟨∆qα∆qi⟩ = ⟨∆qi∆qα⟩. Let us now do the following defini-
tions [

¯̄Γ
]
ij
= ⟨∆qi⟩ γj[

¯̄V
]
ij
= ⟨∆qi∆qj⟩[

¯̄Λ
]
ij
= kij

By virtue of these, the information contained in Eq. S6 may be compacted as

1

2

[
¯̄V ¯̄Λ+

(
¯̄Λ ¯̄V

)T
]
− ¯̄Γ = kBT

¯̄I (S7)
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With ¯̄I as the N ×N identity matrix. Taking into account that
(
¯̄Λ ¯̄V

)T

=
(
¯̄V
)T (

¯̄Λ
)T

and adding ¯̄Γ to both sides, we have

1

2

[
¯̄V ¯̄Λ+

(
¯̄V
)T (

¯̄Λ
)T

]
= kBT

¯̄I + ¯̄Γ (S8)

But we know that the covariance matrix ¯̄V is symmetric, and therefore
(
¯̄V
)T

= ¯̄V .

The final result is reached by multiplying from the left side by
(
¯̄V
)−1

, and defining the

stiffness matrix as ¯̄K = 1
2

[
¯̄Λ+

(
¯̄Λ
)T

]
¯̄K =

(
¯̄V
)−1 (

kBT
¯̄I + ¯̄Γ

)
(S9)

One observation is worth mentioning. On one hand,
[
¯̄K
]
ij

=
[
¯̄K
]
ji

by construction.

However, the right-hand side of Eq. S9 is not necessarily symmetric.

Whether that relation holds or not depends on the physics of the problem. However,
as mathematically it is true that the left-handed matrix is symmetric, this imposes con-

straints of the type δ

([
¯̄M
]
ij
−

[
¯̄M
]
ji

)
, for i ̸= j, being ¯̄M the result of operating the

right-hand side of Eq. S9.

There are as many of these constraints as pairs of deformation modes, and their fulfillment
points out the adequacy of the ERM to describe the physics of that specific system. As
we discuss below, a system that follows purely the energy of the ERM will always satisfy
these constraints.

In this regard, let us consider a system whose mechanics can be completely characterized
by only two degrees of freedom: stretching and torsion. The corresponding mechanical
stresses exerted on these deformation modes could be a force and a torque, respectively,
but we restrict ourselves to the case when there is no applied torque. The ERM energy
of a stretched chain reads

E(L, θ) =
1

2

S

L0

∆L2 +
1

2

C

L0

∆θ2 +
g

L0

∆L∆θ −∆Lf (S10)

Where ∆L = L− L0, and ∆θ = θ − θ0 describe a conformation of the chain deformed at
force f . Note also that L = L(f), θ = θ(f) and L0 = ⟨L(f = 0)⟩, θ0 = ⟨θ(f = 0)⟩, where
⟨...⟩ denotes the conformational average.

For N = 2, we can write Eq. S9 following the notation in Eq. S10, as

1

L0

(
S g12
g21 C

)
=

[(
⟨∆L2⟩ ⟨∆L∆θ⟩
⟨∆L∆θ⟩ ⟨∆θ2⟩

)]−1 [
kBT

(
1 0
0 1

)
+

(
⟨∆L⟩ f 0
⟨∆θ⟩ f 0

)]
(S11)

By virtue of the symmetry of the stiffness matrix, there is a constraint with the form
δ(g12 − g21). Nevertheless, as the solution of Eq. S11 yields mathematically different
expressions for both, we maintain this notation in order to distinguish the two solutions
of the twist-stretch coupling. After working out Eq. S11 we achieve

S

L0

=
1

| ¯̄V |
(kBT

〈
∆θ2

〉
− f [⟨∆L∆θ⟩ ⟨∆θ⟩ −

〈
∆θ2

〉
⟨∆L⟩])
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C

L0

=
1

| ¯̄V |
kBT

〈
∆L2

〉
g12
L0

= − 1

| ¯̄V |
kBT ⟨∆L∆θ⟩

g21
L0

= − 1

| ¯̄V |
(kBT ⟨∆L∆θ⟩ − f [

〈
∆L2

〉
⟨∆θ⟩ − ⟨∆L⟩ ⟨∆L∆θ⟩])

where | ¯̄V | = ⟨∆L2⟩ ⟨∆θ2⟩ − ⟨∆L∆θ⟩2.
We further define the function

∆(f) =
2(g12 − g21)

g12 + g21
=

2f(⟨∆L⟩ ⟨∆L∆θ⟩ − ⟨∆L2⟩ ⟨∆θ⟩)
| ¯̄V |(g12 + g21)

(S12)

as an adimensional measure of the insufficiency of the ERM to describe the system.

Clearly, ∆(0) = 0. Therefore, in the absence of a force, the constraint is trivially fulfilled.
In general, in the absence of any deformation stress, the right hand of equation S9 is
symmetric and the well-known result of the fluctuations approach for the unperturbed
ERM is recovered.

In order to show that a system purely described by Eq. S10 will trivially satisfy the
constraint in Eq. S12, we run a Monte Carlo (MC) simulation where the Metropolis
algorithm is applied directly over the energy of the ERM, and the proposed MC moves
are obtained by picking randomly ∆L and ∆θ with step lengths chosen with uniform
probability from a [−0.2, 0.2] interval.

For five different forces, we solve the elastic parameters from Eq. S11, and the constraint
∆(f) from Eq. S12. The results for each force are averaged throughout 10 independent
realizations. Every realization is composed of 107 Monte Carlo steps, and the first 20%
of them are rejected, while only one every ten of the subsequent realizations is taken
into account for statistics. The acceptance ratio is fixed to be approximately 0.56 in all
realizations.

Fig. S2 displays the results, showing that the fluctuations approach gives at all forces a
correct result within error. The expected output - fixed a priori in the code and consistent
with dsDNA elastic parameters taken from the literature - is indicated with a red line in
every figure.
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Figure S2: Elastic parameters and constraint for several forces, computed with the force-
dependent fluctuations approach proposed in this work applied to data arising from a MC
simulation of the energy of the stretched ERM.

S4 Application to stretched dsDNA and dsRNA

S4.1 All-atom MD simulations

Table S1 and S2 report, for dsDNA and dsRNA respectively, the list of sequences analyzed
with the approach introduced in the present study,2,5,6 together with the label assigned
to each sequence for the subsequent representation of the elastic parameters.

The sequences are displayed from the 5’ end to the 3’ end in all cases. The fragments
on the left and right of the hyphens are handles that have not been considered for the
analysis, and whose purpose is to avoid end-effects.

In Section S5 we display the set of elastic parameters for each of the tabulated sequences
and its dependence on the stretching force, as obtained from the application of Eq. S11.
The error bars were estimated by splitting the data in 5 blocks, computing the elastic
constants in each of them, and then applying the bootstrap method.8

In order to describe the sequence-dependent curvature of each molecule, we use the
crookedness, β, as the characteristic parameter of every sequence. The crookedness is
defined as

β(f) = arccos

(
L(f)∑
i di(f)

)
(S13)

Being L(f) the contour length of the molecule axis computed as the sum of the helical
rises of all steps, and di the Euclidean distance between the centers of the two consecutive
basepairs belonging to the step i. This magnitude is proportional to the displacement of

6



Label Sequence
A4GGA4 CGCG-AAAAGGAAAA-CGCG
A4TA4 CGCG-AAAATAAAA-CGCG
A8GG CGCG-AAAAAAAAGG-CGCG
A8T CGCG-AAAAAAAAT-CGCG
DDD CGCG-CGCGAATTCGCG-CGCG

DNAall GCG-CAATGGAGTA-CGC
DUE CGCG-GATCTATTTATTT-CGCG

G4AAG4 CGCG-GGGGAAGGGG-CGCG
G4CG4 CGCG-GGGGCGGGG-CGCG
PolyA CGCG-AAAAAAAAAA-CGCG
PolyAC CGCG-ACACACACAC-CGCG
PolyAG CGCG-AGAGAGAGAG-CGCG
PolyAT CGCG-ATATATATAT-CGCG
PolyCG CGCG-CGCGCGCGCG-CGCG
PolyG CGCG-GGGGGGGGGG-CGCG
TATA CGCG-CGCGAATTCGCG-CGCG
TFBS CGCG-CGCGAATTCGCG-CGCG

Table S1: Sequences of dsDNA analyzed in this work

Label Sequence
AA GGGG-AAAAAAAAAAAAAAAA-GGGG
AC GGGG-ACACACACACACACAC-GGGG
AG GGGG-AGAGAGAGAGAGAGAG-GGGG
AU GGGG-AUAUAUAUAUAUAUAU-GGGG
CG GGGG-CGCGCGCGCGCGCGCG-GGGG
GG GGGG-GGGGGGGGGGGGGGGG-GGGG
seq1 GGGG-CCUAACAUCGAUUCGC-GGGG
seq2 GGGG-UACUGCACUAACGCGA-GGGG
seq3 GGGG-CCGGUAGCCAGGCCGU-GGGG
seq4 GGGG-AUCUUAAUGAAUCAGA-GGGG

RNAall GCG-CAAUGGAGUA-CGC

Table S2: Sequences of dsRNA analyzed in this work

the basepairs composing the chain with respect to the axis of the molecule.

The constraint function defined in Eq. S12 is presented in the Section S5 in addition to
the elastic parameters. It may be understood as a measure of the insufficiency of the
perfectly straight ERM to describe satisfactorily the elastic properties of nucleic acids
with a certain intrinsic curvature. This is evinced by realizing the correlation between
the slope of ∆(f) with β(f = 1 pN) for all dsDNA sequences, as displayed in Fig S3.

The obvious correlation displayed for the dsDNA molecule sets the variation in the con-
straint as an indicator that the ERM does not provide a completely satisfactory description
of the deformability of the chain. This happens because a molecule with large intrinsic
crookedness will respond to an external perturbation through some deformation modes
that are not properly considered by the ERM as it is written in Eq. S10.

In the case of dsRNA sequences, the previous correlation is far from being clear, but this
is ascribed to the fact that the dsRNA intrinsic crookedness is much larger and its value
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for the different sequences is spread along a smaller range.

Figure S3: Slope of ∆(f) versus β(f = 1pN) for dsDNA (blue circles) and dsRNA (red tri-
angles). The computation of the slope entails the assumption that ∆(f) is approximately
linear in f , which is not always true, but allows simpler conveyance of the information
gathered by the analysis. The error bars are the standard errors of the slopes.
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S4.2 Equivalence between crookedness and bending angle

In this section, we show that for a regular helix the definition of the crookedness matches
the one of the helix angle. Let us name in this section the crookedness as β and the helix
angle as ϕ. We thus aim at proving that β = ϕ. From the definition of ϕ, it is clear that

tan(ϕ) = rω (S14)

being r the radius of the helix and ω = 2π
P

the helical frequency, where P is the helical
pitch. The equation of the helix is

R⃗(z) = r cos(ωz)̂i+ r sin(ωz)ĵ + zk̂ (S15)

The contour length is thus computed as

L =

∫ h

0

∣∣∣∣∣dR⃗(z)

dz

∣∣∣∣∣ dz = h
√
1 + (rω)2 (S16)

Where h is the helical rise. For a system composed of a single step, the crookedness reads

cos(β) =
h

L
=

1√
1 + (rω)2

Where for the last step the relation in Eq. S16 was used. Since cos(α) = 1√
1+tan2(α)

,

comparing the former and Eq. S14, we conclude that indeed β = ϕ.
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S4.3 Toy Model for the variation of the Twist Modulus

In this section we make explicit the derivation of Eq. 4 of the main text. From the origin
of the coordinate frame P⃗0 := (0, 0, 0), we set three pairs of points representing three
base-pairs

A⃗0 := P⃗0 − rŷ, B⃗0 := P⃗0 + rŷ

A⃗1 :=
¯̄Rxy(−θ)A⃗0 + bẑ, B⃗1 :=

¯̄Rxy(−θ)B⃗0 + bẑ

A⃗2 :=
¯̄Rxy(−θ)A⃗1+bẑ = ¯̄Rxy(−2θ)A⃗0+2bẑ, B⃗2 :=

¯̄Rxy(−θ)B⃗1+bẑ = ¯̄Rxy(−2θ)B⃗0+2bẑ

Whence r, b ∈ R+, θ is the intrinsic torsion angle, and the rotation matrix in the xy plane
is

¯̄Rxy(ϕ) =

cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1


We now define P⃗1 := P⃗0 + bẑ, and P⃗2 := P⃗1 + bẑ. We next rotate counterclockwise in the
yz plane the points A⃗2 and B⃗2 from P⃗1 by a bending angle β to define

rβ(A⃗2) :=
¯̄Ryz(−β)

[
A⃗2 − P⃗1

]
, rβ(B⃗2) :=

¯̄Ryz(−β)
[
B⃗2 − P⃗1

]
Being the rotation matrix in the yz plane

¯̄Ryz(ϕ) =

1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)


If we further define rβ(P⃗2) =

¯̄Ryz(−β)
[
P⃗2 − P⃗1

]
, it is easy to show that P⃗i = [A⃗i + B⃗i]/2

∀i ∈ {0, 1, 2}, and that rβ(P⃗2) = [rβ(A⃗2) + rβ(B⃗2)]/2. Then P⃗0, P⃗1 and rβ(P⃗2) represent
the centers of the base-pairs in this toy model. We assign to each center a vector pointing
from one base to the opposite one defined as u⃗i = B⃗i − A⃗i ∀i ∈ {0, 1, 2}, and rβ(u⃗2) =

rβ(B⃗2) − rβ(A⃗2). It is also straightforward to show that |u⃗0| = 2r, and since the rest
are obtained through isometries of the space from u⃗0, it must be |u⃗i| = 2r ∀i ∈ {0, 1, 2},
together with |rβ(u⃗2)| = 2r.

The torsion angle χ(θ, β) is the one formed between the projections on the xy plane of u⃗1

and rβ(u⃗2), whose versors are denoted as û1,xy and r̂β(u2)xy respectively. This amounts to

χ(θ, β) = arccos [û1,xy · r̂β(u2)xy] = arccos

{
cos(θ)

[
cos(β) + 2 sin2(θ)(1− cos(β))√

1− cos2(2θ) sin2(β)

]}
(S17)

The schematic representation of the toy model is shown in Fig. S4. We next assume
that the intrinsic torsion angle θ is a random variable following a Boltzmann distribution
of an energy that is harmonic on the torsional deformability. The variance is ⟨∆θ2⟩ =

L0kBT/C̃, as given by the equipartition theorem, with a constant intrinsic twist modulus

C̃. Analogously, the twist modulus, C(β) is related to the variance of the torsion angle
via C(β) = L0kBT/ ⟨∆χ(θ, β)2⟩. For small variations of β around β0, we can perform the
expansion

C(β) ≈ C(β0) +

(
∂C(β)

∂β

)
β=β0

(β − β0) (S18)

(
∂C(β)

∂β

)
β=β0

= −L0kBT

[
1

⟨∆χ(θ, β0)2⟩2

(
∂ ⟨∆χ(θ, β)2⟩

∂β

)
β=β0

]
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Figure S4: Elements of the Toy Model. The torsion angle χ(θ, β) will be the one formed
by the projection on the xy plane of the rotation by an angle β of the top vector with the
adjacent vector.

where the brackets denote the ensemble average over θ. Indeed, being χ(θ, β) a function
of a single random variable, by the Law Of The Unconscious Statistician (LOTUS) we
can use the probability distribution of θ to compute any expected value of a function of
χ(θ, β). For further simplifications, we assume that χ(θ, β) and its derivative with respect
to β are approximately linear around the statistically significant variations of θ around
θ0, which is equivalent to state that C̃/L0kBT ≫ 1, so that

χ(θ, β0) ≈ g0 + g1[θ − θ0], g0 = χ(θ0, β0), g1 =

(
∂χ(θ, β0)

∂θ

)
θ=θ0(

∂χ(θ, β)

∂β

)
β=β0

≈ h0+h1[θ−θ0], h0 =

(
∂χ(θ0, β)

∂β

)
β=β0

, h1 =

[
∂

∂θ

(
∂χ(θ, β0)

∂β

)
β=β0

]
θ=θ0

where we have omitted the fact that g0, g1, h0 and h1 are all functions of θ0 and β0 in
order to simplify the notation. Employing the previous expansions and by the hand of
the LOTUS, we can now compute〈

∆χ(θ, β0)
2
〉
=

∫ ∞

−∞
P (θ)[χ(θ, β0)− g0]

2dθ ≈ g21
L0kBT

C̃
(S19)

(
∂ ⟨∆χ(θ, β)2⟩

∂β

)
β=β0

=

∫ ∞

−∞
P (θ)2[χ(θ, β0)− g0]

(
∂χ(θ, β)

∂β

)
β=β0

dθ ≈ g1h1
2L0kBT

C̃
(S20)

being P (θ) the probability distribution function of θ. The result sketched in Eq. S19 also

relates the intrinsic twist modulus with the twist modulus at zero force: C̃ = g21C(β0).
We continue by substituting Eq. S19 and S20 in Eq. S18, and making use of the relation
between C̃ and C(β0) to achieve

C(β) = C(β0) [1 + sin(β0)Ω(θ0, β0) (β − β0)] (S21)

Ω(θ, β) =
16 [3 cos(4θ)− 1 + cos(2β){1 + cos(4θ)}]

[cos(4θ)− 3− cos(2β){1 + cos(4θ)}] [8 cos(β) + cos(4θ)− 3− cos(2β){1 + cos(4θ)}]
Which is Eq. 4 of the main text. We shall recall here that, as discussed in the main text,
the expansion performed to achieve Eq. S21 is accurate in the limit C̃/L0kβT → ∞, when
the fluctuations of the intrinsic torsion angle are small.
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Fig. S5 displays the crookedness stiffnesses computed for all dsDNA and dsRNA sequences
from its definition ∂ cos(β)/∂f = cos(β0)/kβ via linear regression assuming linearity ver-
sus the corresponding crookedness at 1 pN. The error bars are the standard deviations
computed through error propagation neglecting the covariance term. We observe that the
fit presented in Ref.2 reproduces satisfactorily the trend for both dsDNA and dsRNA.
Finally, Fig S6 represents the relative variation of the twist modulus C

′
(f)/C(β0) against

Figure S5: Crookedness stiffness, kβ, as a function of the intrinsic crookedness, β(f =
1pN) for the dsDNA sequences (blue circles) and the dsRNA sequences (red triangles)
analyzed in this work. The black solid line represents the fit performed by Marin-Gonzalez
et al.2 and used for the analytic result in Fig. 1 center of the main text.

the intrinsic crookedness for both the simulation analysis and the analytical solution of
the model that we have described. We also display the numerical solution of the model
in order to show under which conditions is the analytic approximation reliable.

Solving numerically the model requires as additional input the intrinsic twist modulus C̃
and the contour length. The former is expected to depend on the specific sequence, and
the latter is not the same for all molecules studied in this work, so we choose to show two
representative cases. We display the dsDNA numerical solution with C̃ = 435 pN nm2

and L0 = 9 × 0.34 nm, where the twist modulus has been taken from Ref.,3 and we
compute the contour length as the number of steps of PolyA times the typical helical rise
of a dsDNA step.

On the other hand, the dsRNA numerical solution is computed with C̃ = 410 pN nm2

and L0 = 15 × 0.28 nm, being both C̃ and the helical rise taken from Ref.,4 and where
15 is the number of bp steps of most dsRNA sequences analyzed in this work. Moreover,
we display a numerical solution with L0 of dsDNA and twice its twist modulus in order
to show that indeed for large C̃ the numerical solution matches the analytical result.
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Figure S6: Relative variation of the twist modulus, C
′
(f)/C(β0), as a function of the

intrinsic crookedness, β(f = 1pN), for the dsDNA sequences (blue circles), the dsRNA
sequences (red triangles), and the analytic result for the Toy Model (black solid line).
Green crosses correspond to the numerical solution with dsDNA input, cyan plusses cor-
respond to the numerical solution with dsRNA input, and violet stars correspond to the
numerical solution with twice the twist modulus of dsDNA.

S4.4 Variation of the Stretch Modulus

Here we detail the interpretation of the variation of the stretch modulus in terms of the
model presented in Ref.,2 which states that the stretch modulus may be expressed as

1

S(f)
=

∑
i

1

kl,i
+

1

kβ(f)

Being kl,i the stiffness constant assigned to the base-pair step i, and kβ(f) the force-
dependent crookedness stiffness. If we account for the crooked curvature, the complete
energy of the system can be written as

E(L, θ, β) = EERM(L, θ) + L0
kβ

2 cos(β0)
[cos(β(f))− cos(β0)]

2 − L0f [cos(β(f))− cos(β0)]

where EERM(L, θ) is the energy in Eq. S10 and β0 =< β(f = 0) >. Now, taking
advantage of the fact that the deformation of the crooked curvature is decoupled with
respect to the remaining deformation modes in this expression, we use the generalized
equipartition theorem to reach

kβ(f) = cos(β0)

kBT + fL0

〈
[cos(β(f))− cos(β0)]

〉
L0

〈
[cos(β(f))− cos(β0)]2

〉 (S22)

being kBT the thermal energy of the system. We compute kβ(f) from Eq. S22 for all
the sequences studied in this work. In order to compact the sign and magnitude of the
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dependence of kβ(f) on f , we follow the same strategy suggested for the elastic parameters,
meaning that we perform linear regressions of kβ(f) versus force representations, and
express k

′

β(f) as the slope of such regression, with the standard error of the slope giving
an idea of how much does the habit of kβ(f) deviates from linearity.

Fig. S7 shows the resulting k
′

β(f) with respect to the relative slide variation. First to

Figure S7: Slopes of Crookedness stiffnesses versus force representations as a function of
the relative slide variation for all dsDNA sequences (blue circles) and all dsRNA sequences
(red triangles) analyzed in this work.

notice is that, as expected from the discussion in the main text, k
′

β(f) > 0 for all dsDNA

sequences, and k
′

β(f) < 0 within error for most dsRNA sequences.

Additionally, we observe that with the exception of a few dsDNA sequences, the set
displays a positive correlation between k

′

β(f) and the relative slide variation, which is
consistent with our hypothesis that the change of the stretch modulus should be ascribed
to a change in this parameter, and the subsequent change of the strength of the stacking
interactions.
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(a) (b)

Figure S8: h-rise against slide bins for dsDNA - polyCG (a) and dsRNA - CG (b). Green
lines represent the normalized populations of the slide bins. The regions of the h-rise
against λ representation where the population was very small have been truncated due
to the larger error, although they were taken into account for the estimation of λ(f) by
means of Eq. S23.

S4.5 Variation of the slide upon stretching

The discussion in Section S4.4 and in the main text (Fig. 2a) ascribes the increase or
decrease of the stretch modulus to the change in the slide upon pulling. The different
slide variation of dsDNA and dsRNA was noticed in precedent studies.5 In this section,
we further inspect the sequences displaying the most extreme behaviors with respect to
the variation of the slide: PolyCG of dsDNA with ∆λ/|λ(f = 1pN)| ≈ 19.9%, and CG
of dsRNA with ∆λ/|λ(f = 1pN)| ≈ −8.5%, for which we compute the h-rise and slide of
every step of the trajectory at f = 1 pN .

Fig. S8 displays the correlation between slide and h-rise (h) for dsDNA - PolyCG Fig.S8a
and dsRNA - CG Fig.S8b. In this regard, we divided the range of observed values of
λ in bins of size equal to 0.04 nm and, for each bin, we computed the average h-rise of
the corresponding simulation frames. Green lines display the populations of each slide
bin, which were shifted by an arbitrary constant to enable simultaneous plotting of the
populations and the correlations. We see how the majority of frames lies within the
h′(λ) > 0 region for dsDNA (≈ 69% of the population) and within the h′(λ) < 0 region
for dsRNA (≈ 71 % of the population). The stretching force exerts a work −f∆h per
step, so that larger values of h are more favorable. This notion explains why |λ| → 0 for
dsDNA, given the fact that dsDNA steps have the property h′(λ) > 0 with λ < 0 (Fig.
S8 (a)), while |λ| → ∞ for dsRNA, provided that in this case h′(λ) < 0 with λ < 0 (Fig.
S8 (b)).

Furthermore, the {λ, h} graphs in Fig. S8 may be taken as a map h : {λ} → {h− rise},
and used to estimate the expected evolution of the slide with the stretching force via free-
energy perturbation.8 We write the potential energy of the Hamiltonian of our system
as

U(q̄, f) = U0(q̄)− fNh(q̄)

being q̄ the set of atomic coordinates, U0(q⃗) the potential energy in the absence of a force,
N the number of steps, and h(q⃗) the h-rise. We then compute the average

⟨λ⟩f =

∫
λ(q̄) exp[−βU0(q̄) + βfNh(q̄)]dq̄∫

exp[−βU0(q̄) + βfNh(q̄)]dq̄
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(a) (b)

Figure S9: Prediction of evolution of slide upon stretching for dsDNA - polyCG (a) and
dsRNA - CG (b).

being β the inverse of the thermal energy. Then we multiply and divide by
∫
exp[−βU0(q̄)]dΓ,

and rearrange to achieve

⟨λ⟩ (f) =
∫
λ(q̄) exp[−βU0(q̄)] exp[βfNh(q̄)]dΓ∫

exp[−βU0(q̄)]dΓ
×
[∫

exp[−βU0(q̄)] exp[βfNh(q̄)]dΓ∫
exp[−βU0(q̄)]dΓ

]−1

Which finally leads to

⟨λ⟩f =
⟨λ exp[βfNh]⟩f=0

⟨exp[βfNh]⟩f=0

(S23)

Based on Eq. S23, we can predict the evolution of the slide with the stretching force (Fig.
S9).

The prediction based on the free-energy perturbation provides a good estimation of the
relative slide variation of the two molecules - ∆λ/|λ(f = 1pN)| ≈ −21% for dsDNA
polyCG and ∆λ/|λ(f = 1pN)| ≈ −10% for dsRNA CG, to be compared with their
respective values 19.9% and −8.5% obtained from the simulations at a pulling force of
20 pN . The estimation predicts a behavior of λ(f) in good agreement with the simulations,
thus providing a clear insight on the variation of the slide upon stretching, and ultimately
on the variation of the stretch modulus.

16



S4.6 Variation of the twist-stretch coupling

Fig. S10 represents the g′(f) resulting from the analysis of the fluctuations of the dsDNA
and dsRNA sequences. As discussed in the main text, g′(f) > 0 for both molecules implies
on one hand that the positive twist-stretch correlation of dsDNA vanishes, and that the
negative twist-stretch correlation of dsRNA is enhanced on the other hand. The case of
dsDNA, not only does have experimental support, but it can be also interpreted in terms
of a force-mediated transition between two states of the steps.5

The results for dsRNA imply that the negative twist-stretch correlation increases upon
pulling. In the next section, we demonstrate that a standard helical object with fixed
radius would display g′(f) < 0 on top of g(f) > 0, which illustrates the non-triviality of
the results displayed in Fig. S10.

Figure S10: Variation of the twist stretch coupling with the stretching force for dsDNA
(blue circles) and dsRNA (red triangles).
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S4.7 Stretching a helix with fixed radius and fixed contour length

In this section, we compute g(f) and g′(f) for a helical object with fixed radius. The
helical frequency, ω, is the parameter that matches best the concept of twist. A helix
with smaller pitch P will have a larger number of turns per unit height than another helix
of the same radius with larger P, which translates into a larger ω and would be interpreted
ultimately as having a larger twist. From Eq. S16 and the fact that h = 2π

Nω
it is possible

to write

ω(L) =
2π

N

√√√√[
L2 −

(
2πr

N

)2
]−1

(S24)

and then expand ω(h+∆h) for small deformations, i. e. ∆h ≪ 1, to achieve

ω(h+∆h) = ω0 + ω1∆h+ ω2∆h2 +O(∆h3) (S25)

ω0 = ω(h)

ω1 = −2πL

N

[
L2 −

(
2πr

N

)2
]−3/2

ω2 =
2π

N

L2N2 + 2π2r2[
L2 −

(
2πr
N

)2]2
√√√√[

L2 −
(
2πr

N

)2
]−1

Since ω ∈ R+, it must be L > 2πr
N
, so that independently of the particular values of the

parameters, ω1 < 0 and ω2 > 0. The former implies g(f) > 0 for a helical object of
constant radius, i. e. that stretching and twisting are negatively correlated. The latter,
on the other hand, implies that g′(f) < 0, meaning that such negative correlation is being
cut down upon pulling. Interestingly, limL→∞(ω1) = limL→∞(ω2) = 0, which means that
at some point g(f) = 0 and the correlation is completely lost. This observation highlights
the fact that our findings for dsRNA are far from trivial.

As a final word, all along this derivation we have assumed that r is constant and inde-
pendent of the stretching force. In order to make this problem mathematically solvable
right away, some assumption of this kind must be made. On the other hand, the negative
twist-stretch coupling of dsDNA has been connected in previous studies7 to the radius of
the helix being reduced upon pulling, so that it is clear that for dsDNA the assumption
of a constant r does not hold.
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S5.1 A4GGA4 - Fig. S11

S5.2 A4TA4 - Fig. S12

S5.3 A8GG - Fig. S13

S5.4 A8T - Fig. S14

S5.5 DDD - Fig. S15

S5.6 DNAall - Fig. S16

S5.7 DUE - Fig. S17

S5.8 G4AAG4 - Fig. S18

S5.9 G4CG4 - Fig. S19

S5.10 polyA - Fig. S20

S5.11 polyAC - Fig. S21

S5.12 polyAG - Fig. S22

S5.13 polyAT - Fig. S23

S5.14 polyCG - Fig. S24

S5.15 polyG - Fig. S25

S5.16 TATA - Fig. S26

S5.17 TFBS - Fig. S27

S5.18 AA - Fig. S28

S5.19 AC - Fig. S29

S5.20 AG - Fig. S30

S5.21 AU - Fig. S31

S5.22 CG - Fig. S32

S5.23 GG - Fig. S33

S5.24 seq1 - Fig. S34

S5.25 seq2 - Fig. S35

S5.26 seq3 - Fig. S36

S5.27 seq4 - Fig. S37

S5.28 RNAall - Fig. S38
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Figure S11: Force dependence of elastic parameters and constraint of A4GGA4.

Figure S12: Force dependence of elastic parameters and constraint of A4TA4.
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Figure S13: Force dependence of elastic parameters and constraint of A8GG.

Figure S14: Force dependence of elastic parameters and constraint of A8T.
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Figure S15: Force dependence of elastic parameters and constraint of DDD.

Figure S16: Force dependence of elastic parameters and constraint of DNAall.
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Figure S17: Force dependence of elastic parameters and constraint of DUE.

Figure S18: Force dependence of elastic parameters and constraint of G4AAG4.
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Figure S19: Force dependence of elastic parameters and constraint of G4CG4.

Figure S20: Force dependence of elastic parameters and constraint of polyA.

26



Figure S21: Force dependence of elastic parameters and constraint of polyAC.

Figure S22: Force dependence of elastic parameters and constraint of polyAG.
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Figure S23: Force dependence of elastic parameters and constraint of polyAT.

Figure S24: Force dependence of elastic parameters and constraint of polyCG.
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Figure S25: Force dependence of elastic parameters and constraint of polyG.

Figure S26: Force dependence of elastic parameters and constraint of TATA.
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Figure S27: Force dependence of elastic parameters and constraint of TFBS.

Figure S28: Force dependence of elastic parameters and constraint of AA.
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Figure S29: Force dependence of elastic parameters and constraint of AC.

Figure S30: Force dependence of elastic parameters and constraint of AG.

31



Figure S31: Force dependence of elastic parameters and constraint of AU.

Figure S32: Force dependence of elastic parameters and constraint of CG.

32



Figure S33: Force dependence of elastic parameters and constraint of GG.

Figure S34: Force dependence of elastic parameters and constraint of seq1.
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Figure S35: Force dependence of elastic parameters and constraint of seq2.

Figure S36: Force dependence of elastic parameters and constraint of seq3.
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Figure S37: Force dependence of elastic parameters and constraint of seq4.

Figure S38: Force dependence of elastic parameters and constraint of RNAall.
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