Electronic Supplementary Information

Can magneto-transport properties provide insight into the functional groups in semiconducting MXenes?

Namitha Anna Koshi,
a Anup Kumar Mandia,
b Bhaskaran Muralidharan,
b Seung-Cheol Lee, c,* and Satadeep Bhattacharjee
 a,*

^aIndo-Korea Science and Technology Center (IKST), Jakkur, Bengaluru 560065, India ^bDepartment of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India

^cElectronic Materials Research Center, KIST, Seoul 136-791, South Korea

*E-mail: leesc@kist.re.kr, s.bhattacharjee@ikst.res.in

Figure S1: Side view of Sc_2CF_2 (a) I, (b) II, (c) III and (d) IV configurations. Side and top view of optimized structure of Sc_2C functionalized by (e,h) F, (f,i) O and (g,j) OH. Lavendar, brown, blue, red and white balls correspond to Sc, C, F, O and H atoms respectively.

Figure S2: For Sc_2CF_2 , the conduction band edge shift position for uniaxial strain along (a) x, (c) y, and (e) z directions. The relationship between total energy and strain along (b) x, (d) y, and (f) z directions are given for Sc_2CF_2 .

Table S1: Deformation potential calculation for Sc₂CF₂: E(ϵ)=a ϵ +b, D_A= $\frac{\partial E}{\partial \epsilon}$ =a

	\mathbf{LA}	TA	ZA
Parameter a	-2.166	-2.17	-6.842
Standard error	± 0.07429	± 0.07243	± 0.0006
D . 1			1 500
Parameter b	-1.541	-1.541	-1.539
Standard error	± 0.00053	± 0.00051	± 0.00004

 $\label{eq:constraint} \mbox{Table S2: Elastic moduli calculation for $$ Sc_2CF_2: E(\epsilon) = a\epsilon^2 + b\epsilon + c, $C = \frac{\partial^2 E}{\partial \epsilon^2} = 2a$}$

	\mathbf{LA}	\mathbf{TA}	ZA
Parameter a	69.218	69.205	49.620
Standard error	± 0.522	± 0.517	± 0.142
Parameter b	-0.124	-0.124	-0.014
Standard error	± 0.0031	± 0.0031	± 0.0008
Parameter c	-38.451	-38.451	-38.451
Standard error	± 0.00003	± 0.00003	± 0.000009

Figure S3: Scattering rates versus energy due to acoustic phonons: (a) Sc_2CF_2 , (b) Sc_2CO_2 and (c) $Sc_2C(OH)_2$.

Figure S4: Conductivity as a function of temperature: (a) Sc_2CF_2 , (b) Sc_2CO_2 and (c) $Sc_2C(OH)_2$.

Figure S5: For a given concentration $(n=5\times10^{12} \text{ cm}^{-2})$, the difference in Hall scattering factor Δr calculated using RTA and Rode approach as a function of temperature.

Figure S6: The Hall scattering factor as a function of concentration at different temperatures (a)Sc₂CF₂, (b)Sc₂CO₂ and (c)Sc₂C(OH)₂. (d) Hall factor of Sc₂CF₂, Sc₂CO₂ and Sc₂C(OH)₂ at 300 K.

Material	g(E)	h(E)	$\frac{h(E)}{((g(E)))^2}$
$\frac{\rm Sc_2CF_2}{\rm Sc_2CO_2}$	1.63×10^{-7} 4.52×10^{-7}	-5.97×10^{-12} -3.60×10^{-11}	-224.69 -176.21
$Sc_{2}C(OH)_{2}$	6.80×10^{-7}	-8.96×10^{-11}	-193.77

Table S3: At Fermi energy (E_F) for doping concentration of 4×10^{13} cm⁻² and temperature of 300 K Material g(E) h(E) $\frac{h(E)}{((g(E)))^2}$