Supplementary Information

Single-Particle Optical Study on the Effect of Chloride Posttreatment of MAPbI₃ Nanocrystals

Handong Jin ^{#a}, Amitrajit Mukherjee ^{#a}, Lata Chouhan ^a, Julian A. Steele ^{b,d}, Flip de Jong ^a, Yujie Gao ^b, Maarten B. J. Roeffaers ^b, Johan Hofkens ^{*a, c} and Elke Debroye ^{*a}

^aDepartment of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, Belgium

^bcMACS, Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium

^cMax Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

^dSchool of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia

Correspondence to:

E-mail: johan.hofkens@kuleuven.be; elke.debroye@kuleuven.be

Supplementary Figures

Fig. S2. SEM images of (a) MAPbI₃, (b) MAPbI₃-3%Cl, (c) MAPbI₃-9%Cl and (d) MAPbI₃-17%Cl NCs.

Fig. S3. Size distribution of the (un)passivated MAPbI₃ microcrystals population.

Fig. S4 (a) Comparison of (002) and (110) Bragg peaks. (b) Zoom out of XRD pattern at around 15.6 ° of MAPbI₃, MAPbI₃-3%Cl, MAPbI₃-9%Cl and MAPbI₃-17%Cl NCs. It is shown that the diffraction peak at 15.6 ° begin to appear for MAPbI₃-9%Cl NCs and becomes stronger for MAPbI₃-17%Cl NCs.

Fig. S5. XRD patterns of MAPbI₃-17%Cl NCs, MAPbCl₃ and MACl thin films. Apparently, the peaks at 15.6 ° originate from the formation of MAPbCl₃.

Fig. S6. XPS survey spectra of MAPbI₃, MAPbI₃-3%Cl, MAPbI₃-9%Cl and MAPbI₃-17%Cl NCs.

Fig. S7. EDS spectra and elemental composition (inset) of MAPbI₃, MAPbI₃-3%Cl, MAPbI₃-9%Cl and MAPbI₃-17%Cl NCs.

Fig. S8. Fitted EDS spectra of MAPbI₃, MAPbI₃-3%Cl, MAPbI₃-9%Cl and MAPbI₃-17%Cl NCs. The content of chloride gradually increases with the amount of MACl added.

Fig. S9. EDS mapping of carbon, nitrogen, lead, iodide and chloride elements for MAPbI₃-3%Cl NCs.

Fig. S10. EDS mapping of carbon, nitrogen, lead, iodide and chloride elements for MAPbI₃-9%Cl NCs.

Fig. S11. (a) Tauc plots of MAPbI₃, MAPbI₃-3%Cl, MAPbI₃-9%Cl, and MAPbI₃-17%Cl. The bandgap energies were estimated after Kubelka-Munk transformation.¹ Each bandgap is determined by the intersection point of the corresponding dashed tangent line and horizontal axis. (b) Zoom out of Tauc plots of untreated and post-treated MAPbI₃ NCs. Although the calculated bandgap keep almost the same, a slightly larger bandgap with showing blue shift can be observed.

The PLQY values show an evolution of 1.1%, over 1.4% and 1.6% to 3.2% (excitation power density: 0.9 mWcm⁻²) for the pure MAPbI₃ NCs, the MAPbI₃-3%Cl, MAPbI₃-9%Cl, and MAPbI₃-17%Cl post-treated NCs, respectively. The relatively low PLQY values compared with literature originate from the relatively large size of the NCs.²² Interestingly, a slight PL blue shift (~2 nm) is found after 3% Cl treatment. A blue or redshift of emission wavelengths is attributed to a change

of the electronic structure in the band tail states. Because the band tail states are governed by structural disorder or defects in NCs, they usually exhibit a redshift in the PL spectrum edge. Defect passivation by chloride treatment reduces the band tail states in the bandgap and thus leads to a slightly blue shift of PL emission. Therefore, the blue shift in the PL spectrum, along with the PL enhancement, probably originate from the remediation of traps (in the band tail states).

Further blue-shifts of PL peak position with increasing Cl content, are related to the shift of band edges. The shift of the band edges has usually been attributed to the charge transfer between the passivating compound and the perovskite surface. Especially, Zheng et al. reported that MAPbI₃ perovskite films with a passivated surface exhibit a slightly larger bandgap compared to non-passivated perovskites.³ Similarly, in our work, upon formation of MAPbCl₃ on the crystal surface when adding 9% to 17% Cl, a further blue-shift (~6 nm) of PL peaks can be observed due to the large bandgap of MAPbCl₃. although all the Cl untreated and treated NCs show almost the same bandgap (1.56eV), the NCs with Cl-passivated surfaces exhibit a slightly gradual larger bandgap compared with the pristine MAPbI₃ NCs as shown in Fig. S11.

Fig. S12. Variation on the averaged PL lifetime extracted from the fitted PL decay curves (fitted parameters depicted in the inset table).

Analysis of time-correlated single-photon counting (TCSPC) data

In order to deeply understand the dynamics of the photo-generated carriers in the perovskite nanoparticles, we recorded the TCSPC histograms of the MAPbI₃ NCs without and with the Cl post-treatment. Single or double exponential functions cannot describe the decay curves. The TCSPC data could be fitted by a triple-exponential decay function as shown in the following equation:

$$I(t) = A_1 \exp\left(\frac{-t}{\tau_1}\right) + A_2 \exp\left(\frac{-t}{\tau_2}\right) + A_3 \exp\left(\frac{-t}{\tau_3}\right) + B$$

Where A_1 , A_2 , A_3 , τ_1 , τ_2 , τ_3 and B are the decay amplitudes, the decay lifetimes, and a constant for the baseline offset (noise), respectively.

The average decay time $\overline{\tau}$ () in Fig. S12 was calculated according to the formula

$$\bar{\tau} = (A_1\tau_1^2 + A_2\tau_2^2 + A_3\tau_3^2)/(A_1\tau_1 + A_2\tau_2 + A_3\tau_3)$$

The fitting results are listed in the inset table of Fig. 2b.

When the content of MACl further increases, with the appearance of a tiny amount of MAPbCl₃ phase as shown in the XRD spectra, the long lifetime components of the fitted curves of the NCs with 9% and 17%Cl treatment gradually decrease, suggesting less freedom for the diffusion of the free charge carriers and thus again, relatively high trap densities compared with that of the 3%Cl-treated MAPbI₃ NCs.

	., (,						
Publication	MHP system under study	Chemicals used for MAX (X = Cl, I) treatment	Remarks				
Method: Cl-doping							
Jin et al. Adv. Opt. Mater., 2021, 9, 2002240 (Ref. 15 in ms)	MAPbI ₃ nanocrystals	MACl was dissolved in pure DMSO and directly added to the precursor solution	PL lifetime was fitted with a tri-exponential function. Lifetime increased with increasing extent of Cl- doping. 1. <u>Pristine</u> : $\tau_1 = 0.55$ ns, τ_2 = 5.26 ns, $\tau_3 = 50.5$ ns 2. <u>2% Cl-doping</u> : $\tau_1 = 0.78$ ns, $\tau_2 = 9.64$ ns, $\tau_3 = 90.8$ ns 3. <u>5% Cl-doping</u> : $\tau_1 = 1.15$ ns, $\tau_2 = 16.18$ ns, $\tau_3 = 108$ ns				
Saidaminov et al. Nat. Energy 2018, 3, 648–654. (Ref. 17 in ms)	Cs _{0.05} MA _{0.15} FA _{0.8} - PbI _{2.55} Br _{0.45} film	PbCl ₂ added in the precursor (CsMAFA) solution in DMSO + DMF (1:4) maintaining a 5% Cl concentration	Improved stability of Cl- treated perovskites. Improved PL lifetime (bi- exponential) after Cl- treatment. <u>Pristine CsMAFA</u> : $\tau_1 = 11 \text{ ns}, \tau_2 = 877 \text{ ns}$ <u>Cl-treated</u> : $\tau_1 = 12 \text{ ns}, \tau_2 =$ 954 ns Variation of the PL lifetime with the concentration of MACl is not reported.				
Son et al. Nat. Energy 2016, 1, 16081 (Ref. 16 in ms)	MAPbI ₃ film	An excess of MAI is used in the precursor solution in DMSO as,	Bi-exponential fitting 1. $\tau_1 = 3.4 - 3.89$ ns and $\tau_2 = 15.7 - 18.6$ ns				

 Table S1. A brief comparison of the lifetime components before and after halide-based doping or post-treatment of MAPbI₃ (-based) materials.

			1. MAI: $PbI_2 = 0.9:1$ to 1:1	2. $\tau_1 = 3.9, \tau_2 = 24.9$ ns			
			2. MAI: $PbI_2 = 1.06:1$	3. $\tau_1 = 1.7$, $\tau_2 = 12.8$ ns			
			3. MAI:PbI ₂ = 1.1:1	Enhancement of lifetime upon usage of excess MAI. However, a high excess of MAI (MAI PbL = 1 1.1)			
				creates new defects and deteriorates the PL			
Method: Cl-based post-treatment							
	Anistidan at al	MADhI film	Solta MAL and MACI in IDA	The stability in presence of			
	Aristiaou et al. Nat. Commun. 2017, 8, 15218. (Ref. 19 in ms)		+ chloro-benzene (1:4)	 The stability in presence of light and oxygen increases after MAI post-treatment. Increasing amounts of MAI increased the PL lifetime. 1. Lifetime components are not separately compared. 2. MACI-post-treated MAPbI₃ undergoes material degradation as compared to the pristine material. 3. A critical extent of passivation has not been investigated. 			
	Hwang et al. J.	MAPbI ₃ film	Salt: 9 mM MACl in ethanol	PL intensity and lifetime			
	<i>Appl. Phys. 2019,</i> <i>126, 023101.</i> (<i>Ref. 13 in ms</i>) <i>Kogo et al. Chem.</i>	Cs _{0.05} (FA _{0.83} MA _{0.17}) _{0.95}	Salt. 9 mW MACT in ethalor + cyclohexane (1:3) Remark: No other concentrations of MACI were tested. MACI, MABr, MAI, FAI	 increase after the post- treatment. 1. Lifetime components are not separately compared. 2. Variation of the PL lifetime with the concentration of MACl is not reported. 3. A critical extent of passivation has not been investigated. 			
	Commun., 2020, 56, 1235 (Ref. 18 in ms)	$-Pb(I_{0.83}Br_{0.17})_3 \text{ film}$	solution in isopropanol was directly spin-coated on the $Cs_{0.05}(FA_{0.83}MA_{0.17})_{0.95} -$ $Pb(I_{0.83}Br_{0.17})_3$ film	lifetime has been reported.			
	Jin et al. (Present work)	MAPbI ₃ nano and microcrystals	3% (low), 9% (moderate), 17% (high) MACl post- treatment in ethanol/toluene mixed solvent (v/v ratios are 0.025%, 0.065% and 0.125%)	 Longer PL lifetime can be achieved using a controlled (~3%) MACI treatment. PL lifetime decreases in case of moderate (9%) and excessive (17%) MACI treatment, indicating deterioration of the material quality and 			

	formation of new defects at
	MAPbCl ₃ /I ₃
	heterojunctions.
	3. PL lifetime components
	have been analyzed and
	compared.
	<u>Pristine</u> : $\tau_1 = 1.0$ ns, $\tau_2 =$
	13.8 ns, $\tau_3 = 106$ ns
	<u>3% Cl</u> : $\tau_1 = 1.2$ ns, $\tau_2 =$
	22.8 ns, $\tau_3 = 138$ ns

Fig. S13. SEM and PL images of a single "blinking-free" MAPbI₃ NC with 3%Cl surface treatment.

Fig. S14. SEM and PL images of a single MAPbI₃ NC with 9%Cl surface treatment (shown by the red square).

Fig. S15. SEM and PL images of a single MAPbI₃ NC with 17%Cl surface treatment.

For the majority MAPbI₃-3%Cl crystals, clear suppression of blinking with the appearance of blinking-free trajectories, can be observed (Fig. S13). This is in agreement with the increased PL lifetime, also suggesting reduced trap densities. However, with higher MACl content, the blinking frequency starts to increase again, indicating an additional trap density increase, as shown in Fig. S14 and Fig. S15. Note that the blinking frequency of MAPbI₃-17%Cl post-treated is almost similar to that of the pristine MAPbI₃ NCs.

Fig. S16. Power-law fitting parameters for the probability distributions of the duration of ON times and OFF times of MAPbI₃ NCs with 0, 3, 9, and 17%Cl surface treatment.

Note 1: The power-law exponents of ON states decreased again from α = -1.15 to -1.20 for MAPbI₃ with 9% and 17%Cl treatment, respectively. Meanwhile, lower power-law exponents of OFF states were obtained around -0.90 for pure MAPbI₃-9%Cl and MAPbI₃-17%Cl post-treated NCs, respectively. After the appearance of the MAPbCl₃ phase, blinking frequency begin to increase again, even though higher PL intensity values were obtained possibly due to the band offset of MAPbI₃ and MAPbCl₃. (more explanation in Fig, S22)

Fig. S17. Brightening-bleaching-blinking (*BBB*) characteristic of three representative micro and nanocrystals are demonstrated (top to bottom).

Fig. S18. Two representative micro and nanocrystals are shown with their multi-states blinking (*MSB*) nature.

Fig. S19. Three classes of blinking characteristics, "*Mostly Off*", "*Intermediate*" and "*Mostly On*", are shown (top to bottom) for the representative micro and nanocrystals. Intensity distributions (fitted with double Gaussian function) of each blinking trajectory are shown (yellow) in the right panel.

Fig. S20. Bar-charts comparison of the emitter occurrence statistics of *BB* (pink) and *PEB* (cyan) characteristic before and after different extent of Cl-based passivation. Dark blue part of the chart represents the overlapped section.

Fig. S21. Two representative micro and nanocrystals (passivated) showing blinking suppression under photo-irradiation.

Fig. S22. Schematic illustration showing (a) replacement of iodide vacancies by chloride ions. The grey, black, pink, and blue spheres represent MA cation, Pb, I, and Cl elements, respectively. (b) The effect of MACl post-treatment on the electronic traps in MAPbI₃ NCs. Schematic illustration showing (c) Mismatch between MAPbI₃ and MAPbCl₃. (d) MAPbI₃/MAPbCl₃ core/shell structure. (e) Band alignment in MAPbI₃/MAPbCl₃ core/shell NCs. CB and VB represent the conduction and valence band; E_g of 1.56 eV and E_g of 3.17 eV are the bandgaps of MAPbI₃ and MAPbCl₃, respectively.

Note 2: When the MAPbCl₃ structure is formed on the MAPbI₃ NC surface for MAPbI₃-9%Cl and MAPbI₃-17%Cl NCs, the mismatch between these two perovskite structures may create new surface defects on the MAPbI₃ NCs or at their interface, resulting in relatively higher blinking frequencies. Quantum wells are generated in layered hetero-structures by joining different semiconductor materials.^{4,5} Our characterization results imply that the emitting MAPbI₃ bulk (1.56

eV) becomes partially coated by a thin layer of MAPbCl₃ with a large bandgap (3.17 eV) upon excessive Cl-treatment, generating a two-layered semiconductor heterostructure with a quantum well band structure of MAPbI₃ residing in the MAPbCl₃ bandgap, (so-called Type-I heterojunction). In the core MAPbI₃, the conduction band energy is lower, and the valence band energy is higher, as illustrated in Fig. S22.⁶ Therefore, both electrons and holes can be confined in the MAPbI₃ region, resulting in a fast exciton decay rate and hence higher PLQY values. A similar phenomenon was reported in a CsPbBr₃/Cs₄PbBr₆ core/shell structure.⁶ The higher quantum efficiency is expected to further result in a higher probability of switching to OFF states in the PL blinking trajectory. Hence, higher blinking frequencies and related fast PL decays agree with the higher PLQY values in the core/shell NCs upon excessive MACl post-treatment.

Fig. S23. Depiction of correlation maps for the representative MAPbI₃ MCs before (upper panel) and after MACl post-treatment (lower panel).

Fig. S24. PL microscopy image representing the self-assembly of MAPbI₃ NCs on the glass coverslip.

Fig. S25. Photoluminescence intermittency of the spatially separated regions of an assembly of two MCs (upper panel) and three NCs (lower panel).

References

- 1. P. Makuła, M. Pacia and W. Macyk, *Journal*, 2018, **9**, 6814-6817.
- 2. I. G. Scheblykin, *Adv. Energy Mater.*, 2020, **10**, 2001724.
- 3. X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng and J. Huang, *Nat. Energy*, 2017, **2**, 1-9.
- 4. D. A. Miller, Quantum Dynamics of Simple Systems," ed. G.-L. Oppo, SM Barnett, E. Riis, and M. Wilkinson (Institute of Physics, London, 1996), 1994, 239-226.
- 5. H. Kumar, A. Kumari and R. R. Singh, *Opt. Mater.*, 2017, **69**, 23-29.
- 6. C. Jia, H. Li, X. Meng and H. Li, *Chem. Commun.*, 2018, **54**, 6300-6303.