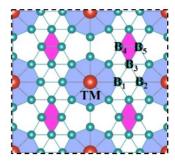
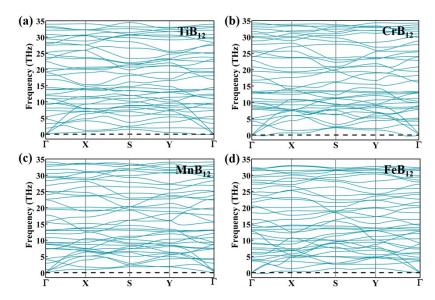

Supporting Information for


TMB₁₂: A Newly Designed 2D Transition-Metal Borides for Spintronics and Electrochemical Catalyst Applications

Feng Wu,^a Xiaojing Yao,^b Yujie Liu,^c Xiangfei Zhu,^c Jinlian Lu,^a Wenqi Zhou,^c Xiuyun Zhang^{c*}

^cCollege of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, China. E-mail: xyzhang@yzu.edu.cn

Fig. S1 The optimized structures of TMB₁₂(TM=Ti, V, Cr, Mn, and Fe) monolayer. The magenta, orange, dark-blue, green, purple and teal balls represent Ti, V, Cr, Mn, Fe and B atoms, respectively.



system	B ₁ -B ₂	B_1-B_3	B ₃ -B ₄	B_4-B_5	
TiB_{12}	1.821	1.767	1.688	1.667	
VB_{12}	1.832	1.755	1.688	1.672	
CrB_{12}	1.826	1.741	1.699	1.699	
MnB_{12}	1.780	1.725	1.707	1.718	
FeB_{12}	1.765	1.719	1.717	1.751	

Fig. S2 The lengths (Å) of party of the B-B bonds in the TMB_{12} structure.

^aDepartment of Physics, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.

^bCollege of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024, China.

 $\textbf{Fig. S3} \ \ The \ phonon \ spectrum \ of (a) \ TiB_{12}; (b) \ CrB_{12}; (c) \ MnB_{12}; \ and (d) \ FeB_{12} \ monolayer.$

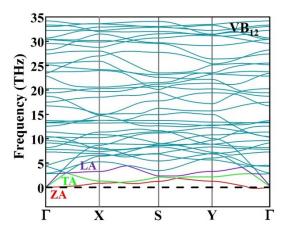
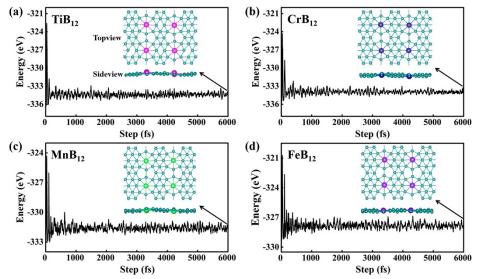
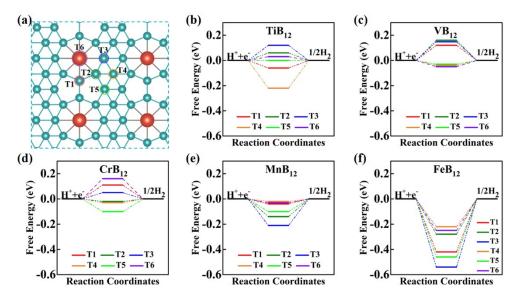




Fig. S4 The phonon spectrum of the VB_{12} monolayer.

Fig. S5 AIMD simulation of (a) TiB_{12} ; (b) CrB_{12} ; (c) MnB_{12} ; and (d) FeB_{12} monolayer at 300 K for 6 ps.

Fig. S6 (a) Illustration of six different hydrogen adsorption sites on TMB_{12} monolayer. (b-f) The Gibbs free energy of six hydrogen adsorption sites for TMB_{12} (TM = Ti, V, Cr, Mn and Fe) monolayer.

Table S1 Calculated elastic constants C (in kbar) of TMB₁₂.

tuble of cure states of the st								
system	C ₁₁	C_{22}	C ₁₂	C ₆₆				
TiB ₁₂	1070.2	1335.0	291.40	501.8				
VB_{12}	1122.8	1306.6	273.1	447.0				
CrB_{12}	984.3	1268.8	213.3	477.0				
$MnB_{12} \\$	981.1	1233.3	234.6	467.1				
FeB_{12}	398.9	1190.8	119.9	438.1				

Table S2. Calculated MAEs along different magnetic directions, the easy axis, and magnetic exchange parameters $(J_1 \text{ and } J_2)$ for TMB₁₂ (TM =V, Cr, Mn, Fe).

system	100 (eV)	010 (eV)	001 (eV)	MAE	Easy	J_1	J_2
				(µeV)	axis	(meV)	(meV)
VB ₁₂	-80.749029	-80.749101	-80.749044	72	(010)	25.0	63.7
CrB_{12}	-80.957244	-80.957053	-80.957476	423	(001)	27.2	22.0
MnB_{12}	-81.129102	-81.129002	-81.129625	623	(001)	10.4	-27.1
FeB ₁₂	-80.157135	-80.157092	-80.157290	198	(001)	-7.83	-14.4