Supporting Information

Optimized Coaxial Focused Electrohydrodynamic Jet Printing of Highly Ordered Semiconductor Sub-Microwire Arrays for High-Performance Organic Field-Effect Transistors

Liangkun Lua, Dazhi Wanga,c,d,*, Zhiyuan Zhaob, Yikang Lia, Changchang Pua, Pengfei Xua, Xiangji Chena, Chang Liua, Shiwen Liangd, Liujia Suoa, Junsheng Lianga, Yan Cuia, Yunlong Guob, Yunqi Liub

aLaboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, 116024, China.

bBeijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China

cKey Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, 116024, China.

dNingbo Institute of Dalian University of Technology, Ningbo, 315000, China.
Figure S1 a-b) Transfer and Output characteristic of the IDTBT thin film based OFETs.

Figure S2 a) Solution of PDVT-10 ink. b-c) Linear array structures of PDVT-10 polymer, which removed silicon oil.