Supporting Information

Exceptional high and reversible NO_x uptake by hollow Mn-Fe composite nanocubes derived from Prussian blue analogue

Rui Wang*, Hongjian Zhu

School of Environmental Science and Engineering, Shandong University, No. 72

Seaside Road, Qingdao 266237, China

* Corresponding author. Email: wangrui@sdu.edu.cn.

Fig. S1 NOx adsorption rate on Mn1Fe3-450 and Mn1Fe3-450 at 200 $^\circ C.$

Fig. S2 Image of the prepared sample absorbed by a magnet.

Fig. S3 The correlation of NOx adsorption capacity with (a), (b) grain size, (c), (d) BET specific surface area, (e), (f) Mn^{3+} content and (g), (h) Fe^{2+} content of Mn_xFe_y -T (mole ratio x/y=1:2, 1:1, 2:1, T is the calcination temperature, 450, 500, 550 °C).

Fig. S4 (a) XRD curve and (b) N_2 adsorption-desorption isotherms and pore size distribution (inset), and (c) SEM of the Mn_1Fe_2 -450-used.

Fig. S5 (a) Mn 2p, (b) Fe 2p, (c) O 1s and (d) C 1s XPS spectra of the Mn_1Fe_2 -450-used.

Fig. S6 The NOx adsorption rate of the Fe_1Fe_2 -450 sample.

Adsorbent	Reaction condition	NOx uptake (mmol g ⁻¹)	Ref.	
Mn_1F_2-450	500 ppm NO + 5% O ₂ (200 °C)	2.16	This work	
$Pt-Ba/\gamma-Al_2O_3$	100 ppm NO + 3% O ₂ (250 °C)	0.379	[1]	
$15 \text{ wt}\%\text{K}_2\text{CO}_3/\text{Co}_1\text{Mg}_2\text{AlO}_x$	100 ppm NO + 10% O ₂ (300 °C)	1.04	[2]	
Pt/Ba/Al ₂ O ₃	1000 ppm NO + 3% O ₂ (350 °C)	0.56	[3]	
Pt-15% K ₂ CO ₃ /ZrO ₂	400 ppm NO + 5% O ₂ (350 °C)	2.16	[4]	
4%K ₂ CO ₃ /Co-Mg-Al	400 ppm NO + 10% O_2 (250 °C)	2.63	[5]	

Table S1. The NO_x uptakes of different literature-reported adsorbents.

[1] L. Lietti, P. Forzatti, I. Nova, E. Tronconi, NOx storage reduction over Pt-Ba/γ-Al₂O₃ catalyst,
J. Catal. 204 (1) (2001) 175–191.

- [2] R. Yang, Y. Cui, Q. Yan, C. Zhang, L. Qiu, D. O'Hare, Q. Wang, Design of highly efficient NOx storage-reduction catalysts from layered double hydroxides for NOx emission control from naphtha cracker flue gases, Chem. Eng. J. 326 (2017) 656–666.
- [3] L. Castoldi, L. Lietti, I. Nova, R. Matarrese, P. Forzatti, F. Vindigni, S. Morandi, F. Prinetto, G. Ghiotti, Alkaline- and alkaline-earth oxides based lean NOx traps: effect of the storage component on the catalytic reactivity, Chem. Eng. J. 161 (3) (2010) 416–423,
- [4] N. Hou, Y. Zhang, M. Meng, Carbonate-based lean-burn NOx trap catalysts Pt-K₂CO₃/ZrO₂ with large NOx storage capacity and high reduction efficiency, J. Phys. Chem. C 117 (8) (2013) 4089–4097,
- [5] Y. Choi, K.B. Lee, Hydrothermal-treatment-based facile one-step preparation of K-promoted NOx adsorbents derived from hydrotalcite-like compounds, Chem. Eng. J. 410 (2021) 128241.

Sample	Mn	Fe	Κ	0	Ν	С	
	at. %						
Mn_1Fe_2-450	10.15	6.99	10.96	47.02	2.96	21.94	
Mn_1Fe_1-450	9.38	5.02	13.07	45.1	4.07	23.35	
Mn_2Fe_1-450	12.17	5.92	11.03	47.87	3.12	19.89	
Mn_1Fe_2-500	4.39	2.83	18.09	49.7	8.95	16.04	
Mn_1Fe_2-550	5.5	3.97	16.1	48.62	9.6	16.22	
Mn ₁ Fe ₂ -450-used	3.02	2.94	16.38	39.64	8.31	29.71	

Table S2. The surface atomic content of the different samples.